Projections

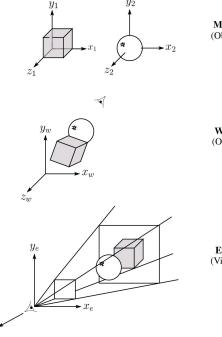
Reading

Angel. Chapter 5

Optional

David F. Rogers and J. Alan Adams, *Mathematical Elements for Computer Graphics, Second edition*, McGraw-Hill, New York, 1990, Chapter 3.

3D Geometry Pipeline

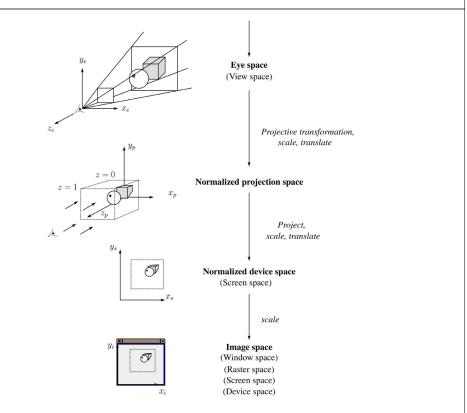


Model space (Object space) scale, translate, rotate, ...

World space (Object space)

rotate, translate

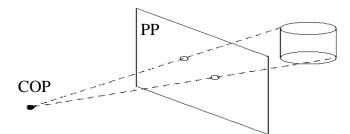
Eye space (View space)



Projections

Projections transform points in *n*-space to *m*-space, where m < n.

In 3D, we map points from 3-space to the **projection plane (PP)** along **projectors** emanating from the **center of projection (COP)**.



There are two basic types of projections:

- **Perspective** distance from COP to PP finite
- **Parallel** distance from COP to PP infinite

Perspective vs. parallel projections

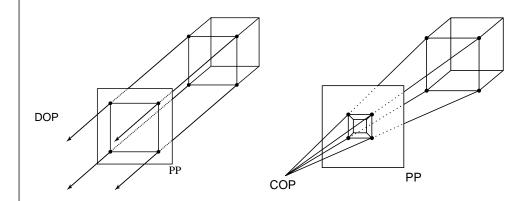
Perspective projections pros and cons:

- + Size varies inversely with distance looks realistic
- Distance and angles are not (in general) preserved
- Parallel lines do not (in general) remain parallel

Parallel projection pros and cons:

- Less realistic looking
- + Good for exact measurements
- + Parallel lines remain parallel
- Angles not (in general) preserved

Parallel and Perspective Projection



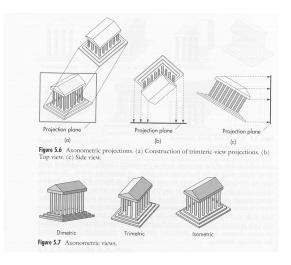
Parallel projections

For parallel projections, we specify a **direction of projection** (**DOP**) instead of a COP.

There are two types of parallel projections:

- **Orthographic projection** DOP perpendicular to PP
- **Oblique projection** DOP not perpendicular to PP

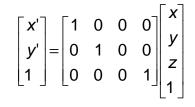
Orthographic Projections



Orthographic transformation

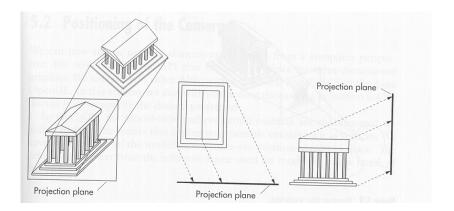
For parallel projections, we specify a **direction of projection** (DOP) instead of a COP.

We can write orthographic projection onto the z=0 plane with a simple matrix.



Normally, we do not drop the z value right away. Why not?

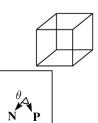
Oblique Projections

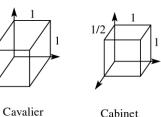


Oblique projections

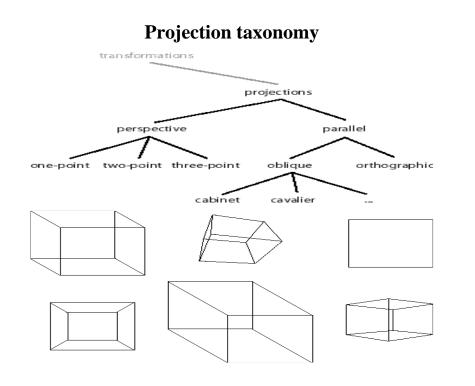
Two standard oblique projections:

- Cavalier projection DOP makes 45 angle with PP Does not foreshorten lines perpendicular to PP
- Cabinet projection DOP makes 63.4 angle with PP Foreshortens lines perpendicular to PP by one-half





Oblique projection geometry



Coordinate systems for CG

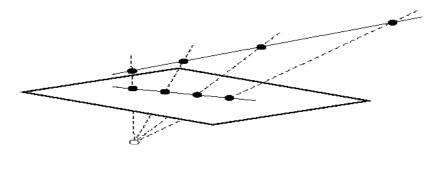
- Model space for describing the objections (aka "object space", "world space")
- World space for assembling collections of objects (aka "object space", "problem space", "application space")
- Eye space a canonical space for viewing (aka "camera space")
- Screen space the result of perspective transformation (aka "normalized device coordinate space", "normalized projection space")
- Image space a 2D space that uses device coordinates (aka "window space", "screen space", "normalized device coordinate space", "raster space")

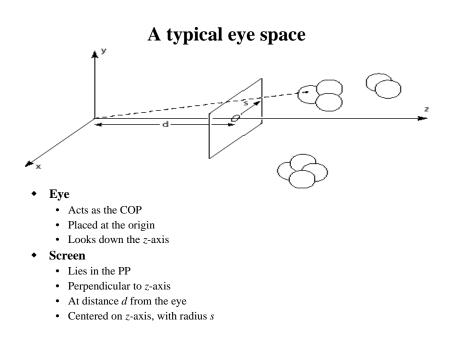
Properties of projections

The perspective projection is an example of a **projective transformation**.

Here are some properties of projective transformations:

- Lines map to lines
- Parallel lines *don't* necessarily remain parallel
- Ratios are *not* preserved

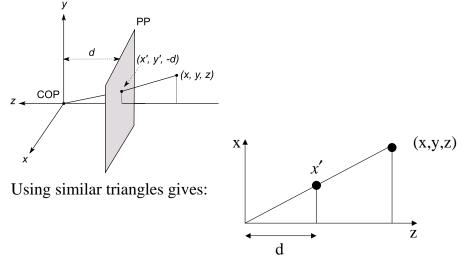




Q: Which objects are visible?

Eye space \rightarrow screen space

Q: How do we perform the perspective projection from eye space into screen space?

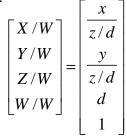


Eye space \rightarrow screen space, cont.

We can write this transformation in matrix form:

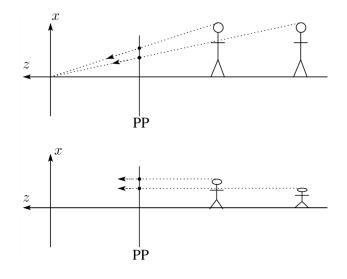
$\begin{bmatrix} X \end{bmatrix}$	[1	0	0	0	$\begin{bmatrix} x \end{bmatrix}$		$\begin{bmatrix} x \end{bmatrix}$
$\begin{vmatrix} Y \\ -MP \end{vmatrix}$	0	1	0	0	y	=	у
$ Z ^{-MF}$	0	0	1	0	z		z.
$\begin{bmatrix} X \\ Y \\ Z \\ W \end{bmatrix} = MP =$	0	0	1/d	01	1		$\lfloor z/d \rfloor$

Perspective divide:



Projective Normalization

After perspective transformation and perspective divide, we apply parallel projection (drop the z) to get a 2D image.



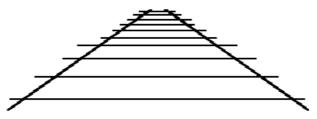
Perspective depth

Q: What did our perspective projection do to *z*?

Often, it's useful to have a z around — e.g., for hidden surface calculations.

Vanishing points

Under perspective projections, any set of parallel lines that are not parallel to the PP will converge to a **vanishing point**.



Vanishing points of lines parallel to a principal axis *x*, *y*, or *z* are called **principal vanishing points**.

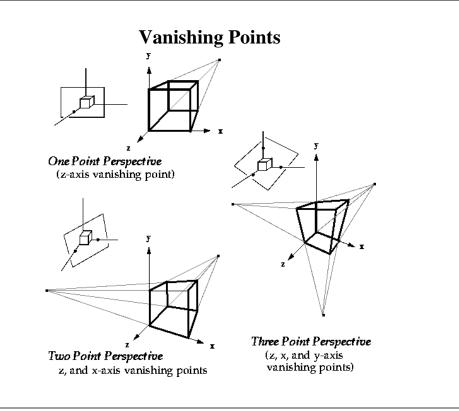
How many of these can there be?

Types of perspective drawing

Perspective drawings are often classified by the number of principal vanishing points.

- One-point perspective simplest to draw
- Two-point perspective gives better impression of depth
- Three-point perspective most difficult to draw

All three types are equally simple with computer graphics.



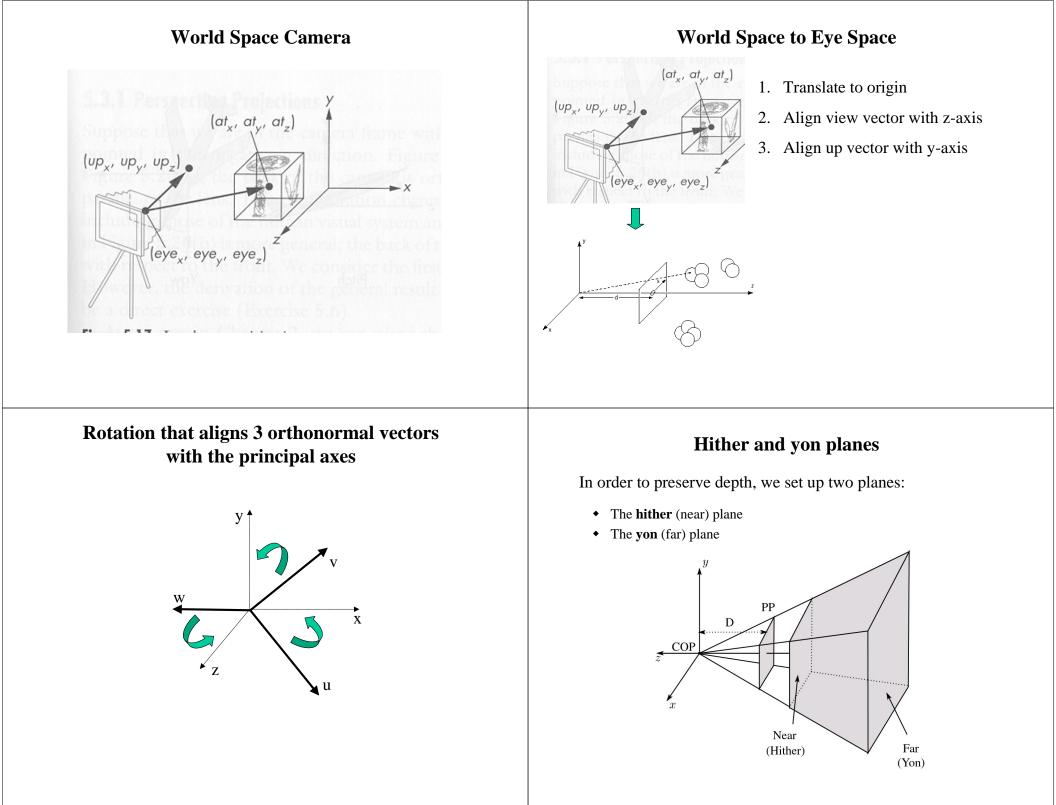
General perspective projection

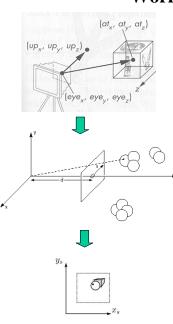
In general, the matrix

performs a perspective projection into the plane px + qy + rz + s = 1.

Q: Suppose we have a cube *C* whose edges are aligned with the principal axes. Which matrices give drawings of *C* with

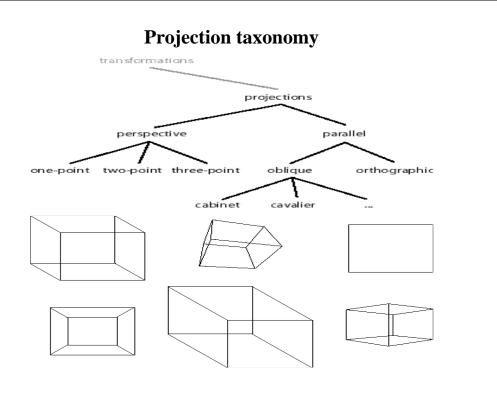
- one-point perspective?
- two-point perspective?
- three-point perspective?





World Space to Eye Space

- 1. Translate to origin
- 2. Align view vector with z-axis
- 3. Align up vector with y-axis
- 4. Square up the view volume
- 5. Bring the far clipping plane to z=1
- 6. Perspective transform



Summary

Here's what you should take home from this lecture:

- The classification of different types of projections.
- The concepts of vanishing points and one-, two-, and three-point perspective.
- An appreciation for the various coordinate systems used in computer graphics.
- How the perspective transformation works.