Particle State

Rigid Body Simulation

$$
\mathbf{X}=\binom{x(t)}{y(t)}
$$

Particle Dynamics

State Derivative

$$
\begin{gathered}
\frac{d}{d t} \mathbf{X}=\frac{d}{d t}\left(\begin{array}{c}
x_{1}(t) \\
v_{1}(t) \\
\vdots \\
x_{n}(t) \\
v_{n}(t)
\end{array}\right)=\left(\begin{array}{c}
v_{1}(t) \\
F_{1}(t) / m_{1} \\
\vdots \\
v_{n}(t) \\
F_{n}(t) / m_{n}
\end{array}\right) \\
\frac{d}{d t} \mathbf{X}=\square \\
\hline . .6 n \text { elements } \ldots \\
\hline
\end{gathered}
$$

ODE solution

Rigid Body State

$$
\mathbf{X}=\left(\begin{array}{c}
x(t)) \\
? \\
v(t) \\
?
\end{array}\right)
$$

Rigid Body Equation of Motion

$$
\frac{d}{d t} \mathbf{X}=\frac{d}{d t}\left(\begin{array}{c}
x(t) \\
? \\
M v(t) \\
?
\end{array}\right)=\left(\begin{array}{c}
v(t) \\
? \\
F(t) \\
?
\end{array}\right)
$$

Net Force

Orientation

We represent orientation as a rotation matrix $R(t)$. Points are transformed from body-space to world-space as:

$$
p(t)=R(t) p_{0}+x(t)
$$

Angular Velocity

We represent angular velocity as a vector $\omega(t)$, which encodes both the axis of the spin and the speed of the spin.

How are $R(t)$ and $\omega(t)$ related?

Angular Velocity Definition

Angular Velocity

$\dot{R}(t)$ and $\omega(t)$ are related by

$$
\frac{d}{d t} R(t)=\left(\begin{array}{ccc}
0 & -\omega_{z}(t) & \omega_{y}(t) \\
\omega_{z}(t) & 0 & -\omega_{x}(t) \\
-\omega_{y}(t) & \omega_{x}(t) & 0
\end{array}\right) R(t)
$$

$\omega(t)^{*}$ is a shorthand for the above matrix

Rigid Body Equation of Motion

$$
\frac{d}{d t} \mathbf{X}=\frac{d}{d t}\left(\begin{array}{c}
x(t) \\
R(t) \\
M v(t) \\
<\omega(t)>
\end{array}\right)=\left(\begin{array}{c}
v(t) \\
\omega(t)^{*} R(t) \\
F(t) \\
?
\end{array}\right)
$$

Need to relate $\dot{\omega}(t)$ and mass distribution to $F(t)$.

Inertia Tensor

$$
I(t)=\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)
$$

diagonal terms
$I_{x x}=M \int_{V}\left(y^{2}+z^{2}\right) d V$
off-diagonal terms
$I_{x y}=-M \int_{V} x y d V$

Rigid Body Equation of Motion
$\frac{d}{d t} \mathbf{X}=\frac{d}{d t}\left(\begin{array}{c}x(t) \\ R(t) \\ M v(t) \\ I(t) \omega(t)\end{array}\right)=\left(\begin{array}{c}v(t) \\ \omega(t)^{*} R(t) \\ F(t) \\ \tau(t)\end{array}\right)$
$P(t)$ - linear momentum
$L(t)$ - angular momentum

Net Torque

$\tau(t)=\sum\left(P_{i}-x(t)\right) \times f_{i}$
... but are Constant in Body Space

$$
I(t)=R(t) I_{\text {body }} R(t)^{T}
$$

$$
I_{x x}=M \int_{V}\left(y^{2}+z^{2}\right) d V \quad I_{x y}=-M \int_{V} x y d V
$$

Approximating $\mathrm{I}_{\text {body }}-$ Bounding Boxes

Pros: Simple.
Cons: Bounding box may not be a good fit. Inaccurate.

Approximating $\mathrm{I}_{\text {body }}$ —Point Sampling

Pros: Simple, fairly accurate, no B-rep needed. Cons: Expensive, requires volume test.

Computing $\mathrm{I}_{\text {body }}$ - Green's Theorem (Twice!)

Pros: Simple, exact, no volumes needed.
Cons: Requires B-rep.
Code: http://www.acm.org/jgt/papers/Mirtich96

Rigid Body Equation of Motion

$$
\frac{d}{d t} \mathbf{X}=\frac{d}{d t}\left(\begin{array}{c}
x(t) \\
R(t) \\
M v(t) \\
I(t) \omega(t)
\end{array}\right)=\left(\begin{array}{c}
v(t) \\
\omega(t)^{*} R(t) \\
F(t) \\
\tau(t)
\end{array}\right)
$$

$P(t)$ - linear momentum
$L(t)$ - angular momentum

