

Computer Graphics Zoran Popović
CSE 457 Spring 2001

Homework 2

Prepared by: Jon Borchardt, Eugene Hsu and Zoran Popović
Assigned: Friday, May 4, 2001
Due: Monday, May 21, 2001

DIRECTIONS

Please provide short written answers to the questions in the space
provided. If you require extra space, you may staple additional pages to
the back of your assignment. Feel free to talk over the problems with
classmates, but please answer the questions on your own.

NAME: ________________________________

Problem 1 (14 points)

The Z-buffer algorithm can be improved by using an image space �Z-pyramid.� The
basic idea of the Z-pyramid is to use the original Z-buffer as the finest level in the
pyramid, and then combine four Z-values at each level into one Z-value at the next
coarser level by choosing the farthest (largest) Z from the observer. Every entry in the
pyramid therefore represents the farthest (largest) Z for a square area of the Z-buffer. A
Z-pyramid for a single 2x2 image is shown below:

a. (3 Points) At the coarsest level of the pyramid there is just a single Z value. What

does that Z value represent?

Suppose we wish to test the visibility of a polygon P. Let Zp be the nearest (smallest)
Z value of polygon P. Let R be the smallest region in the Z-pyramid that completely
covers polygon P, and let Zr be the Z value that is associated with region R in the Z-
pyramid.

Problem 1 - continued

 b. (3 Points) What can we conclude if Zr < Zp?

c. (3 Points) What can we conclude if Zp < Zr?

If the visibility test is inconclusive, then the algorithm applies the same test recursively:
it goes to the next finer level of the pyramid, where the region R is divided into four
quadrants, and attempts to prove that polygon P is hidden in each of the quadrants R of
that P intersects. Since it is expensive to compute the closest Z value of P within each
quadrant, the algorithm just uses the same Zp (the nearest Z of the entire polygon) in
making the comparison in every quadrant. If at the bottom of the pyramid the test is
still inconclusive, the algorithm resorts to ordinary Z-buffered scan conversion to
resolve visibility.

d. (5 Points) Suppose that, instead of using the above algorithm, we decided to go to

the expense of computing the closest Z value of P within each quadrant. Would it
then be possible to always make a definitive conclusion about the visibility P of
within each pixel, without resorting to scan conversion? Why or why not?

Problem 2 (15 points)

BSP trees are widely used in computer graphics. There are many variations that can be
used to increase performance. The following questions deal with some of these
variations.

For the version of BSP trees that we learned about in class, polygons in the scene (or
more precisely, their supporting planes) were used to do the scene splitting. However,
it is not necessary to use existing polygons � one can choose arbitrary planes to split the
scene:

a. (3 Points) What is one advantage of being able to pick the plane used to divide the

scene at each step? What is one disadvantage of not just using existing polygons?

Recall that when using a BSP tree as described in class, we must draw all the polygons
in the tree. This is very inefficient, since many of these polygons will be completely
outside of the view frustum. However, it is possible to store information at the internal
nodes in a BSP tree that will allow us to easily determine if any of the polygons below
that node will be visible. If none of the polygons in that sub-tree will be visible, we can
completely ignore that branch of the tree.

b. (4 Points) Explain what extra information should be stored at the internal nodes to

allow this, and how it would be used to do this �pruning� of the BSP tree.

Problem 2 - continued

c. (4 Points) In class, we talked about doing a �back to front� traversal of a BSP tree.

But it is sometimes preferable to do a �front to back� traversal of the tree, in which
we draw polygons closer to the viewer before we draw the polygons farther away.
(See part (d) for one reason why this is useful) How should the tree traversal order
be changed in order to do a front to back traversal?

When we traverse a BSP tree in back to front order, we may draw over the same pixel
location many times, which is inefficient since we would do a lot of �useless� shading
computations. Assume we instead traverse the tree in front to back order. As we scan
convert each polygon, we would like to be able to know whether or not each pixel of it
will be visible in the final scene (and thus whether we need to compute shading
information for that point).

d. (4 Points) What simple information about the screen do we need to maintain in

order to know if each pixel in the next polygon we draw will be visible or not?

Problem 3 (12 points)

The Phong shading model can be summarized by the following equation:

where the summation i is taken over all light sources. The variables used in the Phong
shading equation are summarized below:
 I a0 a1 a2 di ke ka kd ks ns Ia Ili Li Ri N V

a. (3 Points) Which of the quantities above are affected if...

• �the viewing direction changes?

• �the position of the ith light changes?

• �the orientation of the surface changes? Assume that the change in

orientation is about the intersection point.

Blinn and Newell have suggested that, when V and L are assumed to be constants, the
computation of RV ⋅ can be simplified by associating with each light source a
fictitious light source that will generate specular reflections. This second light source is
located in a direction H halfway between L and V. The specular component is then
computed from () sn

+⋅ HN instead of from () sn
+⋅ RV .

b. (1 Points) Under what circumstances might L and V be assumed to be constant?

c. (2 Points) How does the new equation using H simplify shading equations?

() ()[]∑

++
⋅+⋅++= ++

i ii

n
isidlaaephong dadaa

kkIIkkI s

i 2
210

1,1minRVLN

Problem 3 - continued

The ambient term in the Phong model is one way to guarantee that all visible surfaces
receive some light. Another possibility is to use the "headlamp" method in which a
point light source is positioned at the eye, but no ambient term is used.

d. (2 Points) Are these two methods equivalent? If so, explain why. If not, describe a

scene in which the results would be clearly different.

e. (2 Points) Describe the relationships between N, Li, and Ri that would result in a

point shaded with the Phong model appearing maximally bright.

f. (2 Points) The equation above is not the only hallmark to Mister Phong's fame. We

also talked in class about the difference between two polygon shading methods, one
called Phong and one called Gouraud. Describe a scene where the difference
between Phong and Gouraud shading would be noticeable.

Problem 4 (10 points)

The company you work for has just bought rights to a raytracing engine.
Unfortunately, you don�t have the source code, just a compiled library. You have been
asked to determine how rays are terminated. So, you call the authors you find out even
they don�t remember for sure. All they can tell you is this: The termination criteria for
tracing rays is either (a) rays are traced to a maximum recursion depth of 5, or (b) rays
are adaptively terminated based on their contribution to a pixel color.

a. (4 Points) Describe a scene that can be used to determine which method is used.

Be specific about all relevant aspects of the scene and what you would look for in
the resulting image to determine which termination method is used.

One of the features included in the raytracing engine your company bought is a brand
new algorithm for antialiasing by adaptive supersampling.

The normal implementation is to sample rays at the corner of every pixel, compare the
colors of each sample, and if the difference between neighboring sample colors is too
great, subdivide that region recursively and sample more times. (See the diagram
below, or Foley, et al., 15.10.4)

Scene geometry

One pixel of image plane

Another pixel of image plane

Place where a ray is cast

A B

C
D

Problem 4 – continued

However, in this new algorithm, we subdivide and supersample if neighboring rays
intersect different objects. In other words, note the light-grey pixel above. Three of the
four corner samples (a, b, and c) intersect the scene geometry. The fourth corner (d),
misses the geometry completely. So we choose to supersample this pixel without ever
comparing colors.

b. (6 Points) In what ways is this better than the traditional way? In what ways is it

worse?

Problem 5 (15 points)

In class, we discussed how brute-force sampling, mip maps, and summed area tables can be
employed to anti-alias textures. The latter two techniques average over a region of the
texture image very quickly with varying degrees of accuracy, which we consider further in
this problem. Consider the scene below: an orthographic viewer looking down the �z-axis
views a textured square. The image size and square size are the same and they are initially
aligned to one another as shown. The pixel spacing on the image plane and the texel spacing
on the square are ∆pix and ∆tex, respectively.

A

B

C

D

α γ

β

N

Image plane Textured square

V

u

v

Texture map

A' B'

C'D'

x

y

z

∆pix ∆tex

a. (4 Points) Assuming ∆pix > ∆tex, how must these sample spacings be related in order
for mip mapping to yield the correct values without interpolating among mip map levels?

Problem 5 – continued

b. (4 Points) Consider the coordinate system of the square shown in terms of the normal N

and the two axes aligned with the x and y axes in the figure. Assume that we have the
freedom to rotate the square about any one of those local axes, as indicated by rotation
angles α, β, and γ. What restriction do we have on rotation about any one of these axes
in order for mip mapping to return the correct average texture values? [For example, you
could decide that α, β, and γ must all be zero degrees, or you could decide that some of
them can vary freely, or you can decide that some can take on a set of specific values.
Do not focus on rotations that cause the square to be back-facing.]

c. (4 Points) Now assume we start again with the unrotated geometry and that we�re using

summed area tables. If linear interpolation within the summed area table causes no
significant degradation, what restriction, if any, should we place on the relative pixel and
texel spacings to get correct texture averaging?

d. (3 Points) As in (b), what restriction must we place on rotation about any one of the

given axes in order for summed area tables to return the correct average texture values?

Problem 6 (15 points)

Suppose the equations relating the Hermite geometry to the Bezier geometry were of
the form R1=β(P2-P1), R4=β(P4-P3). Consider the four equally spaced Bezier control
points P1=(0,0), P2=(1,0), P3=(2,0), P4=(3,0). Show that, for the parametric curve Q(t)
to have constant velocity from P1 to P4 the coefficient β must be equal to 3.

Problem 7 (15 points)

A nice property of Bezier curves is that the
curve itself will always remain within the
convex hull of its control points. The convex
hull of a set of points is defined as the smallest
convex polygon containing all those points.
Intuitively, you might imagine the convex hull
of a set of points in two dimensional space to be
the polygon defined by wrapping a rubber band
around those points. In three dimensional
space, imaging using a rubber sheet instead.

An intuitively true property about convex hulls is as follows. Suppose we are given n
points; call these nppp ,...,, 21 . Now suppose we are given n real numbers,

nwww ,,, 21 Κ . If 10 ≤≤ iw for all ni ≤≤1 and 1...21 =+++ nwww , then

nnwww pppq +++= ...2211 lies within the convex hull of the points nppp ,...,, 21 . In
other words, taking a weighted average of a set of points necessarily gives a point
within the convex hull of those points.

a. (3 Points) A point on a cubic Bezier curve can be defined by the function

[]

−
−

−−

=

4

3

2

1

23

0001
0033
0363
1331

1)(

p
p
p
p

Q tttt

where 4321 ,,, pppp are the control points of the curve and 10 ≤≤ t . Write out the
Bezier basis functions)(),(),(),(4321 tftftftf such that

44332211)()()()()(ppppQ tftftftft +++= .

Problem 7 - continued

b. (4 Points) Show that 0)(,0)(,0)(,0)(4321 ≥≥≥≥ tftftftf for all 10 ≤≤ t .

c. (3 Points) Show that 1)()()()(4321 =+++ tftftftf for all 10 ≤≤ t .

d. (2 Point) Using the property about convex hulls stated previously, argue that any

Bezier curve must lie within the convex hull of its control points. (Make sure you
use the convex hull property exactly as it is stated)

e. (3 Points) Give an example of a situation in which the convex hull property of

Bezier curves might be useful.

	Zoran Popovic
	
	
	
	
	Assigned: Friday, May 4, 2001

	Directions
	b. (6 Points) In what ways is this better than the traditional way? In what ways is it worse?

	Problem 6 (15 points)

	Problem 7 (15 points)

