Image Processing

Reading

Course Reader: Jain et. Al. *Machine Vision* Chapter 4 and 5

Definitions

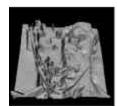
- Many graphics techniques that operate only on images
- **Image processing**: operations that take images as input, produce images as output
- In its most general form, an ${\bf image}$ is a function f from ${\bf R}^2$ to ${\bf R}$
 - f(x, y) gives the intensity of a channel at position (x, y) defined over a rectangle, with a finite range:

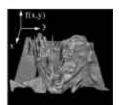
$$f: [a,b] \times [c,d] \to [0,1]$$

A color image is just three functions pasted together:

$$f(x, y) = (f_r(x, y), f_g(x, y), f_b(x, y))$$

Images as Functions





What is a digital image?

- In computer graphics, we usually operate on digital (discrete) images:
 - Sample the space on a regular grid
 - Quantize each sample (round to nearest integer)
- If our samples are Δ apart, we can write this as:

$$f[i,j] = \text{Quantize} \{ f(i\Delta, j\Delta) \}$$

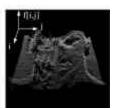
Image processing

- An **image processing** operation typically defines a new image *g* in terms of an existing image *f*.
- The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written:

$$g(x, y) = t(f(x, y))$$

 $\bullet \ \ Example: threshold, RGB \rightarrow grayscale$

Sampled digital image



Pixel Movement

• Some operations preserve intensities, but move pixels around in the image

$$f'(x, y) = f(g(x,y), h(x,y))$$

• Examples: many amusing warps of images

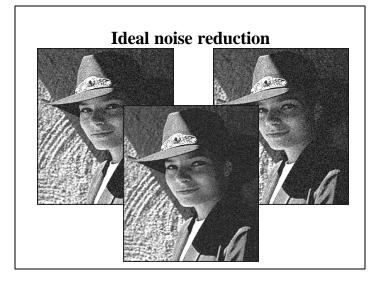
Multiple input images

- Some operations define a new image g in terms of n existing images (f_1, f_2, \dots, f_n) , where n is greater than 1
- Example: cross-dissolve between 2 input images

Noise

- Common types of noise:
 - Salt and pepper noise: contains random occurrences of black and white pixels
 - Impulse noise: contains random occurrences of white pixels
 - Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Noise Examples Original Salt and pepper noise Gaussian noise



Ideal noise reduction

Noise Reduction

• How can we "smooth" away noise?

Convolution

- Convolution is a fancy way to combine two functions.
 - Think of f as an image and h as a "smear" operator
 - $-\ g$ determines a new intensity at each point in terms of intensities of a neighborhood of that point

$$g(x) = f(x) * h(x)$$

$$= \int_{-\infty}^{\infty} f(x')h(x-x')dx'$$

$$= \int_{-\infty}^{\infty} f(x')h(x'-x)dx'$$
where $h(x) = h(-x)$.

Convolution in 2D

In two dimensions, convolution becomes:

$$g(x,y) = f(x,y) * h(x,y)$$

$$= \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(x',y')h(x-x',y-y')dx'dy'$$

$$= \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} f(x',y')h(x'-x,y'-y)dx'dy'$$
where $h(x,y) = h(-x,-y)$

Discrete convolution in 2D

Similarly, discrete convolution in 2D becomes:

$$g[i, j] = f[i, j] * h[i, j]$$

$$= \sum_{k} \sum_{l} f[k, l] h[k - i, l - j]$$

$$= \sum_{k} \sum_{l} f[k, l] h[i - k, j - l]$$
where $h[i, j] = h[-i, -j]$

Mean Filters

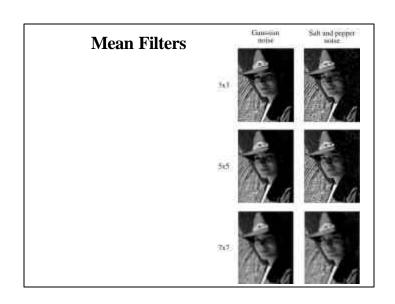
• How can we represent our noise-reducing averaging filter as a convolution diagram?

Convolution Representation

- Since f and h are defined over finite regions, we can write them out in two-dimensional arrays:
- Note: This is not matrix multiplication!

62	79	23	119	120	105	4	0	
10	10	9	62	12	78	34	0	\neg
10	58	197	46	46	0	0	48	
176	135	5	188	191	68	0	49	
4	1	1	29	26	37	0	77	\neg
q	89	144	147	187	102	62	208	
255	252	0	166	123	62	0	31	
166	63	1.27	17	1	0	99	30	

× 2	×0	× 2
$\times 0$	× 2	$\times 0$
×2	×0	V 2



Gaussian Filters

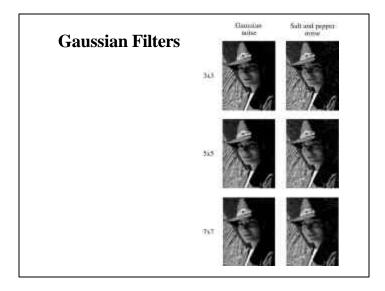
• Gaussian filters weigh pixels based on their distance to the location of convolution.

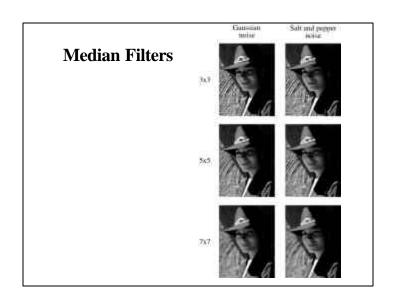
$$h[i,j] = e^{-(i^2+j^2)/2s^2}$$

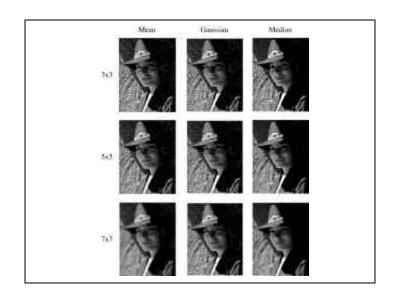
- Blurring noise while preserving features of the image
- Smoothing the same in all directions
- More significance to neighboring pixels
- Width parameterized by σ
- Gaussian functions are separable
- Convolving with multiple Gaussian filters results in a single Gausian filter

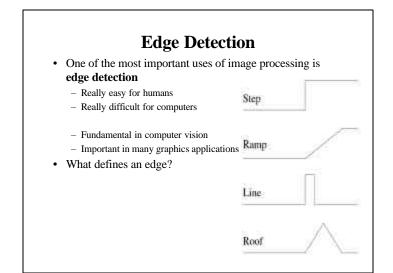
Median Filters

- A **Median Filter** operates over a kxk region by selecting the median intensity in the region.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?







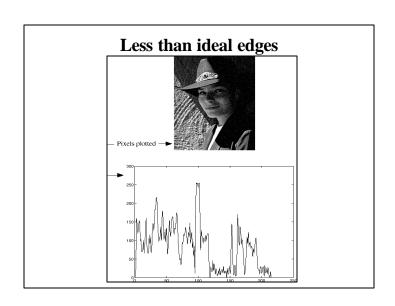


Gradient

• The **gradient** is the 2D equivalent of the derivative:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

- Properties of the gradient
 - It's a vector
 - Points in the direction of maximum increase of f
 - Magnitude is rate of increase
- How can we approximate the gradient in a discrete image?



Edge Detection Algorithms

- Edge detection algorithms typically proceed in three or four steps:
 - Filtering: cut down on noise
 - Enhancement: amplify the difference between edges and non-
 - Detection: use a threshold operation
 - Localization (optional): estimate geometry of edges beyond pixels

Edge Enhancement

• A popular gradient magnitude computation is the **Sobel operator**:

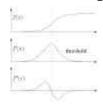
$$s_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$s_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

• We can then compute the magnitude of the vector (s_x, s_y)

Sobel Operators

Second derivative operators



- The Sobel operator can produce thick edges. Ideally, we're looking for infinitely thin boundaries.
- An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.
- Q: A peak in the first derivative corresponds to what in the second derivative?

Localization with the Laplacian

• An equivalent measure of the second derivative in 2D is the **Laplacian**:

 $\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

• Using the same arguments we used to compute the gradient filters, we can derive a Laplacian filter to be:

$$\Delta^2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

• Zero crossings of this filter correspond to positions of maximum gradient. These zero crossings can be used to localize edges.

Localization with the Laplacian

Original

mooned

Laplacian (+128)

Sharpening with the Laplacian

ninal

Original + Laplacian

Original - Laplaciar

Summary

- Formal definitions of image and image processing
- Kinds of image processing: pixel-to-pixel, pixel movement, convolution, others
- Types of noise and strategies for noise reduction
- Definition of convolution and how discrete convolution works
- The effects of mean, median and Gaussian filtering
- How edge detection is done
- Gradients and discrete approximations