

Reading

Required:

- Foley, et al, Chapter 5.1-5.5

Further reading:

- David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, $2^{\text {nd }}$ Ed., McGraw-Hill, New York, 1990, Chapte 2.

Geometric transformations

Geometric transformations will map points in one space to points in another: $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=f(x, y, z)$.

These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.

Representation

We can represent a point, $\mathbf{p}=(\mathrm{x}, \mathrm{y})$ in the plane

- as a column vector $\quad\left[\begin{array}{l}x \\ y\end{array}\right]$
- as a row vector $\quad\left[\begin{array}{ll}x & y\end{array}\right]$

Representation, cont.

We can represent a2-D transformation M by a matrix
$M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
If \mathbf{p} is a column vector, M goes on the left:

$$
\mathbf{p}^{\prime}=M \mathbf{p}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

If \mathbf{p} is a row vector, M^{\top} goes on the right:

$$
\mathbf{p}^{\prime}=\mathbf{p} M^{\top}
$$

We will use column vectors.

Two-dimensional transformations

Here's all you get with a 2×2 transformation matrix M :

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

So:

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=c x+d y
\end{aligned}
$$

We will develop some intimacy with the elements a, b, c, d..

$$
\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

Scaling

Suppose we set $b=c=0$, but let a and d take on any positivevalue:

- Gives a scaling matrix:

$$
\left[\begin{array}{ll}
\mathrm{a} & 0 \\
0 & \mathrm{~d}
\end{array}\right]
$$

- Provides differential scaling in x and y :

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=d y
\end{aligned}
$$

Scaling

Suppose we keep $b=c=0$, but let either a ord go negative.

Effect on unit square

Let's see how a general 2×2 transformation M affects the unit square:
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{llll}\mathbf{p} & \mathbf{q} & \mathbf{r} & \mathbf{s}\end{array}\right]=\left[\begin{array}{llll}\mathbf{p}^{\prime} & \mathbf{q}^{\prime} & \mathbf{r}^{\prime} & \mathbf{s}^{\prime}\end{array}\right]$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{llll}0 & a & a+b & b \\ 0 & c & c+d & d\end{array}\right]$

Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and dgive x - and y-scaling
- b and cgive x - and y-shearing

Limitations of the $\mathbf{2 \times 2} 2$ matrix

A 2×2 matrix allows

- Scaling
- Rotation
- Reflection
- Shearing
\mathbf{Q} : What important operation does that leave out?

Rotation

$\left[\begin{array}{l}1 \\ 0\end{array}\right] \rightarrow\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right]$
$\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{c}-\sin (\theta) \\ \cos (\theta)\end{array}\right] \quad M=R(\theta)=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to every point

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

And then transform with a 3×3 matrix:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=T(t)\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Rotation around arbitrary point

Basic 3-D transformations: scaling
Some of the 3-D transformations are just like the 2-D ones.
For example, scaling:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cccc}s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$

Translation in 3D

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{llll|l}1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

Shearing in 3D

Shearing is also more complicated. Here is one example:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & b & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation in 3D

Rotation now has more possibilities in 3D:

$R_{x}(\theta)$	$=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$R_{y}(\theta)$	$=\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$R_{z}(\boldsymbol{\theta})$	$=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
R_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$路 22

Properties of affine transformations

All of the transformations we've looked at so far are examples of " affine transformations."

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented
- What all the elements of a 2×2 transformation matrix do and how these generalize to 3×3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.

