

Reading

Angel. Chapter 5

Optional

David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, Second edition, McGraw-Hill, New York, 1990, Chapter 3.

Projections

Projections transform points in n-space to m-space, where $m<n$.
In 3D, we map points from 3-space to the projection plane ($\mathbf{P P}$) along projectors emanating from the center of projection (COP).

There are two basic types of projections:

- Perspective - distance from COP to PP finite
- Parallel - distance from COP to PP infinite

Perspective vs. parallel projections

Perspective projections pros and cons:

+ Size varies inversely with distance - looks realistic
- Distance and angles are not (in general) preserved
- Parallel lines do not (in general) remain parallel

Parallel projection pros and cons:

- Less realistic looking
+ Good for exact measurements
+ Parallel lines remain parallel
- Angles not (in general) preserved

Parallel and Perspective Projection

Parallel projections

For parallel projections, we specify a direction of projection (DOP) instead of a COP.

There are two types of parallel projections:

- Orthographic projection - DOP perpendicular to PP
- Oblique projection - DOP not perpendicular to PP

Orthographic transformation

For parallel projections, we specify a direction of projection (DOP) instead of a COP.

We can write orthographic projection onto the $z=0$ plane with a simple matrix.

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Normally, we do not drop the z value right away. Why not?

Oblique projections

Two standard oblique projections:

- Cavalier projection

DOP makes 45 angle with PP
Does not foreshorten lines perpendicular to PP

- Cabinet projection

DOP makes 63.4 angle with PP
Foreshortens lines perpendicular to PP by one-half
Oblique projection geometry

Cavalier
Cabinet

Properties of projections

The perspective projection is an example of a projective transformation.

Here are some properties of projective transformations:

- Lines map to lines
- Parallel lines don't necessarily remain parallel
- Ratios are not preserved

Coordinate systems for CG

- Model space - for describing the objections (aka "object space", "world space")
- World space - for assembling collections of objects (aka "object space", "problem space", "application space")
- Eye space - a canonical space for viewing (aka "camera space")
- Screen space - the result of perspective transformation (aka "normalized device coordinate space", "normalized projection space")
- Image space - a 2D space that uses device coordinates (aka "window space", "screen space", "normalized device coordinate space", "raster space")

Eye space \rightarrow screen space

Q: How do we perform the perspective projection from eye space into screen space?

Using similar triangles gives:

Projective Normalization

After perspective transformation and perspective divide, we apply parallel projection (drop the z) to get a 2 D image.

Eye space \rightarrow screen space, cont.

We can write this transformation in matrix form:

$$
\left[\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right]=M P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]
$$

Perspective divide:

$$
\left[\begin{array}{c}
X / W \\
Y / W \\
Z / W \\
W / W
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right]
$$

Perspective depth

Q: What did our perspective projection do to z ?
Often, it's useful to have a z around - e.g., for hidden surface calculations.

Vanishing points

Under perspective projections, any set of parallel lines that are not parallel to the PP will converge to a vanishing point.

Vanishing points of lines parallel to a principal axis x, y, or z are called principal vanishing points.

How many of these can there be?

General perspective projection

In general, the matrix

$$
\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
p & q & r & s
\end{array}\right]
$$

performs a perspective projection into the plane $p x+q y+r z+s=1$.

Q: Suppose we have a cube C whose edges are aligned with the principal axes. Which matrices give drawings of C with

- one-point perspective?
- two-point perspective?
- three-point perspective?

General perspective projection
In general, the matrix
$\left[\begin{array}{llllll}1 & & & \\ & 1 & & \\ & & 1 & \\ p & q & r & s\end{array}\right]$
performs a perspective projection into the plane $p x+q y+r z+s=1$.

Types of perspective drawing

Perspective drawings are often classified by the number of principal vanishing points.

- One-point perspective - simplest to draw
- Two-point perspective - gives better impression of depth
- Three-point perspective - most difficult to draw

All three types are equally simple with computer graphics.

World Space Camera

Hither and yon planes

In order to preserve depth, we set up two planes:

- The hither (near) plane
- The yon (far) plane

Summary

Here's what you should take home from this lecture:

- The classification of different types of projections.
- The concepts of vanishing points and one-, two-, and three-point perspective.
- An appreciation for the various coordinate systems used in computer graphics
- How the perspective transformation works

