Topics in Articulated Animation
\square

Reading

Shoemake, "Quaternions Tutorial"

	Animation
Articulated models:	
• rigid parts	
• connected by joints	
They can be animated by specifying the joint angles (or other	
display parameters) as functions of time.	

Character Representation

Character Models are rich, complex

- hair, clothes (particle systems)
- muscles, skin (FFD's etc.)

Focus is rigid-body Degrees of Freedom (DOFs)

- joint angles

Kinematics and dynamics

Kinematics: how the positions of the parts vary as a function of the joint angles.
Dynamics: how the positions of the parts vary as a function of applied forces.

Key-frame animation

- Each joint specified at various key frames (not necessarily the same as other joints)
- System does interpolation or in-betweening

Doing this well requires:

- A way of smoothly interpolating key frames: splines
- A good interactive system
- A lot of skill on the part of the animator

Joints $=$ Rotations

To specify a pose, we specify the joint-angle rotations
Each joint can have up to three rotational DOFs

1 DOF: knee

2 DOF: wrist

3 DOF: arm

10

Singularities

What is a singularity?

- continuous subspace of parameter space all of whose elements map to same rotation

Why is this bad?

- induces gimbal lock - two or more axes align, results in loss of rotational DOFs (i.e. derivatives)

Other Properties of Euler Angles

Several important tasks are easy:

- interactive specification (sliders, etc.)
- joint limits
- Euclidean interpolation (Hermites, Beziers, etc.)
- May be funky for tumbling bodies
- fine for most joints

Quaternions

But... singularities are unacceptable for IK, optimization

Traditional solution: Use unit quaternions to represent rotations

- S^{3} has same topology as rotation space (a sphere), so no singularities

History of Quaternions

Invented by Sir William Rowan Hamilton in 1843

$$
\begin{aligned}
& H=w+\mathbf{i} x+\mathbf{j} y+\mathbf{k} z \\
& \text { where } \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-1
\end{aligned}
$$

I still must assert that this discovery appears to me to be as important for the middle of the nineteenth century as the discovery of fluxions [the calculus] was for the close of the seventeenth

Hamilton

〔quaternions] ... although beautifully ingenious, have been an unmixed evil to those who have touched them in any way

Thompson
Quaternion as a 4 vector

$$
\mathbf{q}=\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\binom{w}{\mathbf{v}}
$$

Quaternion Conjugate

$$
\begin{aligned}
& \mathbf{q}^{*}=\binom{w_{1}}{\mathbf{v}_{1}}^{*}=\binom{w_{1}}{-\mathbf{v}_{1}} \\
& \left(\mathbf{p}^{*}\right)^{*}=\mathbf{p} \\
& (\mathbf{p q})^{*}=\mathbf{q}^{*} \mathbf{p}^{*} \\
& (\mathbf{p}+\mathbf{q})^{*}=\mathbf{p}^{*}+\mathbf{q}^{*}
\end{aligned}
$$

Restricting the rotation twist around an axis

Quaternion Rotation

$$
\begin{aligned}
\mathbf{q p q}^{-1} & =\binom{w}{\mathbf{v}}\binom{0}{\mathbf{p}}\binom{w}{-\mathbf{v}} \\
& =\binom{w}{\mathbf{v}}\binom{\mathbf{p} \cdot \mathbf{v}}{w \mathbf{p}-\mathbf{p} \times \mathbf{v}} \\
& =\binom{u \mathbf{p} \cdot \mathbf{v}-w \mathbf{p} \cdot \mathbf{v}=0}{w(w \mathbf{p}-\mathbf{p} \mathbf{v})+(\mathbf{p} \cdot \mathbf{v}) \mathbf{v}+\mathbf{v}(u \mathbf{p}-\mathbf{p} \times \mathbf{v})}
\end{aligned}
$$

What about a quaternion product $\mathbf{q}_{1} \mathbf{q}_{2}$?

Matrix Form	
$\mathbf{q}=\left(\begin{array}{l}w \\ x \\ y \\ z\end{array}\right)$	
$\mathbf{M}=\left(\begin{array}{ccc}1-2 y^{2}-2 z^{2} & 2 x y+2 w z & 2 x z-2 w y \\ 2 x y-2 w z & 1-2 x^{2}-2 z^{2} & 2 y z+2 w x \\ 2 x z+2 w y & 2 y z-2 w x & 1-2 x^{2}-2 y^{2}\end{array}\right)$	

Quaternions: What Works

Simple formulae for converting to rotation matrix

Continuous derivatives - no singularities
"Optimal" interpolation - geodesics map to shortest paths in rotation space

Nice calculus (corresponds to rotations)

What Hierarchies Can and Can't Do

Advantages:

- Reasonable control knobs
- Maintains structural constraints

Disadvantages:

- Doesn't always give the "right" control knobs
- e.g. hand or foot position-re-rooting may help
- Can't do closed kinematic chains (keep hand on hip)
- Other constraints: do not walk through walls

Procedural Animation

Transformation parameters as functions of other variables

Simple example:

- a clock with second, minute and hour hands
- hands should rotate together
- express all the motions in terms of a "seconds" variable
- whole clock is animated by varying the seconds parameter

Hard Example

In the figure below, what expression would you use to calculate the arm's rotation angle to keep the tip on the star-shaped wheel as the wheel rotates???

