
 

 

Computer Graphics  
Instructor: Zoran Popović 

CSE 457, Autumn 2002 
 
 
 
 
 
 
 
 
 
 

Homework #2 
 
Hidden Surfaces, Shading, Ray Tracing, Texture Mapping, Parametric Curves 
 
 
 

 
 
 
 

Assigned:  Friday, November 8th  
Due:   Wednesday, November 27th, at the beginning of class 

 
 

 
 
 

Directions: Please provide short written answers to the questions in the space provided.  
If you require extra space, you may staple additional pages to the back of your 
assignment.  Feel free to discuss the problems with classmates, but please answer the 
questions on your own. 
 

 
 
 
 
 
 
 

Name:_______________________________________________________________ 
 
 



 

 

Problem 1.  TRUE/FALSE Justify each answer. (10 points) 
 

a. By increasing the number of polygons, you can make the difference between 
Gouraud interpolation and Phong interpolation to be arbitrarily small—you can 
make the polygons small enough that there is no perceivable difference. 

 
 
 
 
 

 
 
b.  Every third order Bezier curve can be broken up into two other third-order Bezier. 

 
 
 
 
 

 
 

c.  Every C^2 continuous spline is also C^1 continuous. 
 
 
 
 
 
 
 
d. Gouraud interpolation cannot produce specular highlights. 
 
 
 
 
 
 
 
e. In the Phong model, specular reflection does not depend on the view angle. 
 
 

 
 
 
 
 
 
 



 

 

Problem 2. Phong Shading (15 points) 
 
The Phong shading model can be summarized by the following equation: 
 
 
 
 
where the summation i is taken over all light sources.  The variables used in the Phong 
shading equation are summarized below: 
 I a0 a1 a2 di ke ka kd ks ns Ia Ili Li Ri N V 
 

a. Which of the quantities above are affected if the viewing direction changes? 
 
  
   
 
Now imagine a scene consisting of a sphere illuminated by white global ambient light and a 
single white directional light.  Assume the directional light is pointing in the same direction as 
the viewer.  Describe the effect of the following conditions on the shading of the object.  At 
each incremental step, assume that all the preceding steps have been applied first. 
 

b. Now increase the specular reflection coefficient ks of the material to be greater than 
zero.  What happens? 

 
 
 
 

c. Now increase the specular exponent ns.  What happens? 
 
 
 
 
 

d. Now rotate the sphere about its own origin and then translate it straight towards the 
viewer.  What happens to the shading of the sphere? 

 
 

 
 
 

e. The directional light is off.  How does the shading vary over the surface of the object? 
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Problem 3.  Z-buffer (20 points) 
 
The Z-buffer algorithm can be improved by using an image space “Z-pyramid.”  The 
basic idea of the Z-pyramid is to use the original Z-buffer as the finest level in the 
pyramid, and then combine four Z-values at each level into one Z-value at the next 
coarser level by choosing the farthest (largest) Z from the observer.  Every entry in the 
pyramid therefore represents the farthest (largest) Z for a square area of the Z-buffer.  A 
Z-pyramid for a single 2x2 image is shown below: 
 

                      
a.  At the coarsest level of the pyramid there is just a single Z value.  What does that Z 

value represent? 
Suppose we wish to test the visibility of a polygon P.  Let Zp be the nearest (smallest) Z 
value of polygon P.  R is a region on the screen that encloses polygon P, and is the  
smallest region of the Z-pyramid that does so.  And let Zr be the Z value that is 
associated with region R in the Z-pyramid. 
 
 

               
 
 
 
 
 
 
 
 



 

 

 
 
b. What can we conclude if Zr < Zp? 
 
 
 
 
 
 
 
 
 
 
c. What can we conclude if Zp < Zr? 
 
 
 
 
 
 
 
 
 
 
If the visibility test is inconclusive, then the algorithm applies the same test recursively: it 
goes to the next finer level of the pyramid, where the region R is divided into four 
quadrants, and attempts to prove that polygon P is hidden in each of the quadrants R of 
that P intersects.  Since it is expensive to compute the closest Z value of P within each 
quadrant, the algorithm just uses the same Zp (the nearest Z of the entire polygon) in 
making the comparison in every quadrant.  If at the bottom of the pyramid the test is still 
inconclusive, the algorithm resorts to ordinary Z-buffered scan conversion to resolve 
visibility. 

 
d.  Suppose that, instead of using the above algorithm, we decided to go to  

the expense of computing the closest Z value of P within each quadrant.  Would it then 
be possible to always make a definitive conclusion about the visibility P of within 
each pixel, without resorting to scan conversion?  Why or why not? 

 
 
 
 
 
 
 
 
 



 

 

 
Problem 4.  Texture Filtering (20 points) 

 
In class, we discussed how brute force sampling, mip maps, and summed area tables can 
be employed to anti-alias textures.  The latter two techniques average over a region of the 
texture image very quickly with varying degrees of accuracy, which we consider further 
in this problem.  Consider the scene below: an orthographic viewer looking down the –z-
axis views a textured square.  The image size and square size are the same and they are 
initially aligned to one another as shown.  The pixel spacing on the image plane and the 
texel spacing on the square are ∆pix  and ∆tex, respectively.  
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a. Assuming  ∆pix > ∆tex, how must these sample spacings be related in order for mip 
mapping to yield the correct values without interpolating among mip map levels? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
Problem 4 (cont’d) 
 
b. Consider the coordinate system of the square shown in terms of the normal N and the 

two axes aligned with the x and y axes in the figure.  Assume that we have the 
freedom to rotate the square about the x-axis, the y-axis, or the N vector, as indicated 
by rotation angles α, β, and γ.  What restriction do we have on rotation about any one 
of these axes in order for mip mapping to return the correct average texture values?  
[For example, you could decide that α, β, and γ must all be zero degrees, or you could 
decide that some of them can vary freely, or you can decide that some can take on a 
set of specific values.  Do not focus on rotations that cause the square to be back-
facing.] 

 
 
 
 
 
 
 
 
 
 
c. Now assume we start again with the unrotated geometry and that we’re using summed 

area tables.  If linear interpolation within the summed area table causes no significant 
degradation, what restriction, if any, should we place on the relative pixel and texel 
spacings to get correct texture averaging? 

 
 

 
 
 
 
 
 
 
 
d. As in (b), what restriction must we place on rotation about any one of the given axes 

in order for summed area tables to return the correct average texture values? 
 



 

 

Problem 5. BSP tree (15 points) 
 
Recall that a BSP tree breaks the world up into tree of positive and negative half-spaces 
that can be traversed to render a scene from an arbitrary viewpoint.  Below is the exact 
same figure used in class to illustrate the principle of BSP trees: 
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Recall that each arrow in the scene tells us which way the normal to a polygon is facing 
and that the normal points to the positive half-space of a polygon. 
 

a.  Given viewpoint C, list the polygons in the order in which they would be drawn 
after traversing the BSP tree to give a back to front ordering. 

 
 
 
 
 
 
 

b.  Given viewpoint D, list the polygons in the order in which they would be drawn 
after traversing the BSP tree to give a back to front ordering. 

 
 
 
 
 
 
 

c.  If we move a polygon in the scene, will we always have to recompute the BSP 
tree?  Justify your answer. 

 
 
 
 
 
 



 

 

Problem 6. Parametric Curves (15 points) 
 
A nice property of Bezier curves is that the 
curve itself will always remain within the 
convex hull of its control points.  The convex 
hull of a set of points is defined as the smallest 
convex polygon containing all those points.  
Intuitively, you might imagine the convex hull 
of a set of points in two dimensional space to be 
the polygon defined by wrapping a rubber band 
around those points.  In three dimensional 
space, imaging using a rubber sheet instead. 
 
An intuitively true property about convex hulls is as follows.  Suppose we are given n 
points; call these nppp ,...,, 21 .  Now suppose we are given n real numbers, 

nwww ,,, 21 Κ .  If 10 ≤≤ iw  for all ni ≤≤1  and 1...21 =+++ nwww , then 

nnwww pppq +++= ...2211  lies within the convex hull of the points nppp ,...,, 21 .  In 
other words, taking a weighted average of a set of points necessarily gives a point within 
the convex hull of those points. 
 

a. A point on a cubic Bezier curve can be defined by the function 
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where 4321 ,,, pppp  are the control points of the curve and 10 ≤≤ t .  Write out the 
Bezier basis functions )(),(),(),( 4321 tftftftf  such that 

 
44332211 )()()()()( ppppQ tftftftft +++= . 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

Problem 6 (cont’d) 
 

b.  Show that 0)(,0)(,0)(,0)( 4321 ≥≥≥≥ tftftftf  for all 10 ≤≤ t . 
 
 
 
 
 
 
 
 

c.  Show that 1)()()()( 4321 =+++ tftftftf  for all 10 ≤≤ t . 
 
 
 
 
 
 
 
 

d.   Using the property about convex hulls stated previously, argue that any Bezier 
curve must lie within the convex hull of its control points.  (Make sure you use 
the convex hull property exactly as it is stated) 

 
 
 
 
 
 
 
 
  
 

e. Give an example of a situation in which the convex hull property of Bezier curves 
might be useful.  
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