
1

1

Particle Systems

2

Reading

Required:

Witkin, Particle System Dynamics, SIGGRAPH
’97 course notes on Physically Based Modeling.
Witkin and Baraff, Differential Equation Basics,
SIGGRAPH ’97 course notes on Physically
Based Modeling.

Optional

Hocknew and Eastwood. Computer simulation
using particles. Adam Hilger, New York, 1988.
Gavin Miller. “The motion dynamics of snakes
and worms.” Computer Graphics 22:169-178,
1988.

3

What are particle systems?

A particle system is a collection of point masses that
obeys some physical laws (e.g, gravity or spring
behaviors).

Particle systems can be used to simulate all sorts of
physical phenomena:

4

Overview

A single particle
Particle systems
Forces: gravity, springs
Collision detection

2

5

Particle in a flow field

We begin with a single particle with:

Position,

Velocity,

Suppose the velocity is actually dictated by some
driving function g:

(,)t=x g x&

/
/

dx dtd
dy dtdt
 

≡ = =  
 

xv x&

x

g(x,t)

x

y

x
y
 

=  
 

x

6

Vector fields

At any moment in time, the function g defines a vector
field over x:

How does our particle move through the vector field?

7

Diff eqs and integral curves

The equation

is actually a first order differential equation.

We can solve for x through time by starting at an
initial point and stepping along the vector field:

This is called an intial value problem and the
solution is called an integral curve.

Start Here

(,)t=x g x&

8

Euler’s method

One simple approach is to choose a time step, ∆t, and
take linear steps along the flow:

This approach is called Euler’s method and looks like:

Properties:

Simplest numerical method
Bigger steps, bigger errors. Error ~ O(∆t2).

Need to take pretty small steps, so not very efficient.
Better (more complicated) methods exist, e.g., “Runge-
Kutta” and “implicit integration.”

() () ()
() (,)

t t t t t
t t t

+ ∆ = + ∆ ⋅
= + ∆ ⋅

x x x
x g x

&

3

9

Particle in a force field

Now consider a particle in a force field f.

In this case, the particle has:

Mass, m
Acceleration,

The particle obeys Newton’s law:

The force field f can in general depend on the position
and velocity of the particle as well as time.

Thus, with some rearrangement, we end up with:

(, ,)t
m

= f x xx
&

&&

m m= =f a x&&

2

2d d
dt dt

≡ = =va x x
&&

10

This equation:

is a second order differential equation.

Our solution method, though, worked on first order
differential equations.

We can rewrite this as:

where we have added a new variable v to get a pair
of coupled first order equations.

Second order equations

(, ,)t
m

= 
 
 =
 

x v
f x vv

&

&

(, ,)t
m

=
f x vx&&

11

Phase space

Concatenate x and v to make a 6-
vector: position in phase space.

Taking the time derivative: another
6-vector.

A vanilla 1st-order differential
equation.

 
 
 

x
v

/ m
   

=   
   

x v
v f
&

&

 
 
 

x
v
&

&

12

Differential equation solver

Applying Euler’s method:

() () ()
() () ()
t t t t t
t t t t t

+ ∆ = + ∆ ⋅
+ ∆ = + ∆ ⋅

x x x
x x x

&

& & &&

Again, performs poorly for large ∆t.

/ m
   

=   
   

x v
v f
&

&

+

+

= + ∆ ⋅

= + ∆ ⋅

1

1

i i i

i
i i

t

t
m

x x v
fv v

() () ()
(, ,)() ()

t t t t t
tt t t t

m

+ ∆ = + ∆ ⋅

+ ∆ = + ∆ ⋅

x x v
f x xx x

&
& &

And making substitutions:

Writing this as an iteration, we have:

Starting with:

4

13

Particle structure

m

 
 
 
 
 
 

x
v
f

position

velocity
force accumulator
mass

Position in phase space

How do we represent a particle?

14

Single particle solver interface

m

 
 
 
 
 
 

x
v
f  

 
 

x
v

/ m
 
 
 

v
f

[]6getDim

derivEval

getState

setState

15

Particle systems

particles n time

In general, we have a particle system consisting
of n particles to be managed over time:

     
     
     
     
     
     

L

1 2

1 2

1 2

1 2

n

n

n

nm m m

x x x
v v v
f f f

16

Particle system solver interface

particles n time

L

L

1 1 2 2

1 2
1 2

1 2

6

n n

n
n

n

n

m m m

x v x v x v
f f fv v v

derivEval

get/setState getDim

For n particles, the solver interface now looks like:

5

17

Particle system diff. eq. solver

And can solve, using the Euler method:

1
1 1 1

1
1 1 1 1

1

1

/

/

i i i

i i i

i i i
n n n
i i i
n n n n

m
t

m

+

+

+

+

     
     
     
     = + ∆
     
     
          

x x v
v v f

x x v
v v f

M M M

   
   
   
   =
   
   
      

&

&

M M

&

&

1 1

1 1 1/

/
n n

n n n

m

m

x v
v f

x v
v f

Thus, we start with:

18

Forces

Each particle can experience a force which sends it
on its merry way.

Where do these forces come from? Some examples:

Constant (gravity)
Position/time dependent (force fields)
Velocity-dependent (drag)
N-ary (springs)

How do we compute the net force on a particle?

19

Particle systems with forces

particles n time forces

F2 Fnf

nf

     
     
     
     
     
     

L

1 2

1 2

1 2

1 2

n

n

n

nm m m

x x x
v v v
f f f

Force objects are black boxes that point to the
particles they influence and add in their contributions.

We can now visualize the particle system with force
objects:

F1

20

Gravity and viscous drag

grav m=f G

p->f += p->m * F->G

drag dragk= −f v

p->f -= F->k * p->v

The force due to gravity is simply:

Often, we want to slow things down with viscous drag:

6

21

Damped spring

r = rest length 1 2∆ = −x x x

1
1

1
p  

=  
 

x
v

2
2

2
p

 
=  
 

x
v

A spring is an example of an “N-ary” force.

1

2 1

()spring dampk k
  ∆ ∆ ∆= − ∆ − +  ∆ ∆  

= −

v x xf x r
x x

f f

�

22

    
    
    

= = =    
    
    

L

1 2

1 2

1 2

1 2

0 0 0

n

n

n

nm m m

x x x
v v v

f f f

derivEval

Apply forces
to particles

Clear force
accumulators1

2

3 Return [v,f/m,…]
to solver

1. Clear forces
• Loop over particles, zero force accumulators

2. Calculate forces
• Sum all forces into accumulators

3. Gather
• Loop over particles, return v and f/m

1 2

1 2

1 2

1 2

n

n

n

nm m m

    
    
    
    
    
    

x x x
v v v
f f f

L

F
2

F
3

FnfF
1

23

Bouncing off the walls

Add-on for a particle
simulator
For now, just simple
point-plane collisions

NP

A plane is fully specified by any point P on the
plane and its normal N.

24

Collision Detection

N

v

P

x

How do you decide when you’ve crossed a plane?

7

25

Normal and tangential velocity

()N

T N

= ⋅
= −

v N v N
v v v

Nv

N

v

P

v
Tv

To compute the collision response, we need to
consider the normal and tangential components of a
particle’s velocity.

26

Collision Response

before after

T restitution Nk= −′v v v

Nv

v Tv v’

resitution Nk− v

Tv

Without backtracking, the response may not be
enough to bring a particle to the other side of a wall.
In that case, detection should include a velocity
check:

27

Summary

What you should take away from this lecture:

The meanings of all the boldfaced terms
Euler method for solving differential equations
Combining particles into a particle system
Physics of a particle system
Various forces acting on a particle
Simple collision detection

