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Particle Systems
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Reading

Required:

Witkin, Particle System Dynamics, SIGGRAPH 
’97 course notes on Physically Based Modeling.
Witkin and Baraff, Differential Equation Basics, 
SIGGRAPH ’97 course notes on Physically 
Based Modeling.

Optional

Hocknew and Eastwood. Computer simulation 
using particles.  Adam Hilger, New York, 1988.
Gavin Miller. “The motion dynamics of snakes 
and worms.” Computer Graphics 22:169-178, 
1988.
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What are particle systems?

A particle system is a collection of point masses that 
obeys some physical laws (e.g, gravity or spring 
behaviors).

Particle systems can be used to simulate all sorts of 
physical phenomena:
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Overview

A single particle
Particle systems
Forces: gravity, springs
Collision detection
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Particle in a flow field

We begin with a single particle with:

Position,  

Velocity, 

Suppose the velocity is actually dictated by some 
driving function g:
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Vector fields

At any moment in time, the function g defines a vector 
field over x:

How does our particle move through the vector field?
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Diff eqs and integral curves

The equation 

is actually a first order differential equation.

We can solve for x through time by starting at an 
initial point and stepping along the vector field:

This is called an intial value problem and the 
solution is called an integral curve.

Start Here

( , )t=x g x&
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Euler’s method

One simple approach is to choose a time step, ∆t, and 
take linear steps along the flow:

This approach is called Euler’s method and looks like:

Properties:

Simplest numerical method
Bigger steps, bigger errors.  Error ~ O(∆t2).

Need to take pretty small steps, so not very efficient.  
Better (more complicated) methods exist, e.g., “Runge-
Kutta” and “implicit integration.”
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Particle in a force field

Now consider a particle in a force field f.

In this case, the particle has:

Mass, m
Acceleration, 

The particle obeys Newton’s law: 

The force field f can in general depend on the position 
and velocity of the particle as well as time.

Thus, with some rearrangement, we end up with:
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This equation:

is a second order differential equation.

Our solution method, though, worked on first order 
differential equations.

We can rewrite this as:

where we have added a new variable v to get a pair 
of coupled first order equations.

Second order equations
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Phase space

Concatenate x and v to make a 6-
vector: position in phase space.

Taking the time derivative: another 
6-vector.

A vanilla 1st-order differential 
equation.
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Differential equation solver

Applying Euler’s method:
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Again, performs poorly for large ∆t.
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And making substitutions:

Writing this as an iteration, we have:

Starting with:
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Particle structure

m
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Position in phase space

How do we represent a particle?
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Single particle solver interface

m
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Particle systems

particles n time

In general, we have a particle system consisting 
of n particles to be managed over time:
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Particle system solver interface

particles n time
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For n particles, the solver interface now looks like:
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Particle system diff. eq. solver

And can solve, using the Euler method:
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Thus, we start with:
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Forces

Each particle can experience a force which sends it 
on its merry way.

Where do these forces come from?  Some examples:

Constant (gravity)
Position/time dependent (force fields)
Velocity-dependent (drag)
N-ary (springs)

How do we compute the net force on a particle?
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Particle systems with forces

particles n time forces
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Force objects are black boxes that point to the 
particles they influence and add in their contributions. 

We can now visualize the particle system with force 
objects:

F1
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Gravity and viscous drag

grav m=f G

p->f += p->m * F->G

drag dragk= −f v

p->f -= F->k * p->v

The force due to gravity is simply:

Often, we want to slow things down with viscous drag:
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Damped spring
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A spring is an example of an “N-ary” force. 
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Apply forces
to particles

Clear force 
accumulators1

2

3 Return [v,f/m,…]
to solver

1. Clear forces
• Loop over particles, zero force accumulators

2. Calculate forces
• Sum all forces into accumulators

3. Gather
• Loop over particles, return v and f/m
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Bouncing off the walls

Add-on for a particle 
simulator
For now, just simple 
point-plane collisions

NP

A plane is fully specified by any point P on the 
plane and its normal N.

24

Collision Detection

N
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x

How do you decide when you’ve crossed a plane?
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Normal and tangential velocity
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To compute the collision response,  we need to 
consider the normal and tangential components of a 
particle’s velocity.
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Collision Response

before after

T restitution Nk= −′v v v
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v Tv v’
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Without backtracking, the response may not be 
enough to bring a particle to the other side of a wall.
In that case, detection should include a velocity 
check:
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Summary

What you should take away from this lecture:

The meanings of all the boldfaced terms
Euler method for solving differential equations
Combining particles into a particle system 
Physics of a particle system
Various forces acting on a particle
Simple collision detection


