#### **Surfaces**

# Reading

#### Required:

• Watt, 2.1.4, 3.4-3.5.

#### Optional

- Watt, 3.6.
- Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.

1

# **Mathematical surface** representations

- ◆ Explicit z=f(x,y) (a.k.a., a "height field")
  - what if the surface isn't a function?



• Implicit g(x,y,z) = 0

• Parametric (x(u,v),y(u,v),z(u,v))

· For the sphere:

$$x(u,v)=r\cos 2\pi v\sin \pi u$$

We'll focus mostly on parametric surfaces.

$$y(u,v) = r \sin 2\pi v \sin \pi u$$



# **Surfaces of revolution**

Idea: rotate a 2D profile curve around an axis.

What kinds of shapes can you model this way?

### General sweep surfaces

The **surface of revolution** is a special case of a **swept surface**.

Idea: Trace out surface S(u,v) by moving a **profile curve** C(u) along a **trajectory curve** T(v).



More specifically:

- Suppose that C(u) lies in an (x<sub>c</sub>,y<sub>c</sub>) coordinate system with origin O<sub>c</sub>.
- For every point along T(v), lay C(u) so that O<sub>c</sub> coincides with T(v).

#### Orientation

The big issue:

How to orient C(u) as it moves along T(v)?

Here are two options:

1. **Fixed** (or **static**): Just translate  $\mathbf{O}_c$  along  $\mathbf{T}(v)$ .



- 2. Moving. Reorient as you move along, based on orientation of **T**(v
  - Allows smoothly varying orientation.
  - Permits surfaces of revolution, for example.

5

#### **Variations**

Several variations are possible:

- Scale C(u) as it moves, possibly using length of T(v) as a scale factor.
- Morph C(u) into some other curve C(u) as it moves along T(v)







7





Figure 3.8: Banana example. A banana is represented by an affine transformation surface. The cross section is scaled, translated along z from -1 to 1, and rotated around the y axis.

# Tensor product Bézier surfaces



Given a grid of control points  $V_{ij}$ , forming a **control net**, contruct a surface S(u,v) by:

- treating rows of **V** (the matrix consisting of the  $V_{ij}$ ) as control points for curves  $V_0(u),...,V_n(u)$ .
- treating V₀(u),..., Vₙ(u) as control points for a curve parameterized by v.

6

# Tensor product Bézier surfaces, cont.

Let's walk through the steps:



Which control points are interpolated by the surface?

#### Matrix form of Bézier surfaces

Tensor product surfaces can be written explicitly:

$$\mathbf{S}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{n} \mathbf{V}_{ij} P_{i}^{n}(u) P_{j}^{n}(v)$$

$$= \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} M_{Bizzier} \mathbf{V} M_{Bizzier}^{T} \begin{bmatrix} v^{3} \\ v^{2} \\ v \\ 1 \end{bmatrix}$$

9

# **Tensor product B-spline surfaces**

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C<sup>2</sup> continuity and local control, we get B-spline surfaces:



11

# **Constructive solid geometry**

Simple shapes can be combined together to make more complex shapes. This process is called constructive solid geometry (CSG)

- glue pieces together
- saw parts off, drill holes



## CSG, cont.





**CSG** with implicit functions

CSG operations are easier to implement with implicit functions.

Let f(x,y,z) and g(x,y,z) be implicit representations of two shapes where

- f(x,y,z) < 0 if (x,y,z) is inside the shape
- f(x,y,z) > 0 if (x,y,z) is outside the shape
- f(x,y,z) = 0 if (x,y,z) is on the surface

h = **union** of f and g

• h(x,y,z) = min(f(x,y,z), g(x,y,z))

h = intersection of f and g

• h(x,y,z) =

h = f - g

+ h(x,y,z) =

13

14

# **Summary**

What to take home:

- How to construct swept surfaces from a profile and trajectory curve
- How to construct tensor product Bézier surfaces
- CSG with implicit functions