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Reading

Requirad:

* Ancgeld.1,46-4.10

Further reading:

* Angel therest of Chapter 4

* Foley, etal, Chapter5.1-5.5.

* DavidF. Regersand 1 Alan Adams,
Mathematical Beme i puter Graphics,

190, Chapter 2.

Geometric transformations

Geometric transformation s will map points in one
space to pointsinanother: iy ') = fix, y. 2.

These tranformations can be very simple, such as
scalingeach coordinate, or complex, such asnon-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation
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Vector cross products
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\ﬁ .1 Representation, cont.

We can representa 2-D transformation M by a
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If pis arow vector, M’ goes on the right:

(ABY = g

Two-dimensional transformations

Hera's all you get with a 2 x 2 transformation matrix

M:
X' _|a bl x
v Le d]ly
Soe
x'=ax+ by
¥'= o+ dy

Wewill develop some intimacy with the elements

abcd..
p'=pu’
o e o]
Wewill use column vectors.
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Identity Saaling

Suppose we choose asd=1, b=c=0:

* Givesthe identity matrix:

o]

*+ Doesn't movethe points at all

Suppose we set b=c=0, but let g and d take on any
positive value:

* Givesascling matrix:
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+ Providesdifferential (non-uniform) scaling in
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Suppose we keep b=c=0, but let eithera or d go
negative.

Examples:
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MNow let's leave a=d=1 andexperiment with b. . ..

The matrix

gives:
A'=x4+by
yl=y
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Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:
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Effect on unit square, cont.

Observe:
* Origin invariant under M
* M can be determined just by knowing how the
corners (1,07 and (0,13 are mapped
* gandd give x-andy-scaling
*+ bandc give x-andy-shearing




Rotation

From our observations of the effect on the unit
square, it should be easy to write down a matrix for
“rotation about the origin™
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Degrees of freedom

For any transformation, we can count its degrees of
freedom - the number of independent ithough not
necessarily unique) parameters needed to specify the
transformation.

One way to countthemisto add up all the i‘\}
apparently free variables and subtract the number of {_.:..h?mh«
equations that constrain them.

How many degrees of freedom does an arbitrary 2X2 Ao
transformation have? c d L‘f

How many degrees of freedom does a 20 rotation
have?
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Limitations of the 2 x 2 matrix

A 2% 2 linear transformation matrix allows

Scaling
Rotation
Reflection
Shearing
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Q:What important operation does that leave out?
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Homogeneous coordinates

We can loft the problem up into 3-space, addinga
third component toevery point:

Addingthe third “w” component putsusin
homeogenous coordinates.

Then, transform with a 3 x 3 matrix:
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...givestranslation!




Affine transformations

The addition of translation to linear transformations
gives us affine transformations.

In matrix form, 2D affine transformations always look

like this:
a b t,
'|.T_ i~ el + — A t
' o o)

001

2D affine tran sformation s always have a bottom row
of [0 1].

An “affine point” is a”linear point’ with an added w-
coordinate which isalways 1:

X
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Applyingan affine transformation gives another
affine point:

Apin 1]
Mpygs = [ |]n
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Rotation about arbitrary points

Until now, we have only considered rotation about
the origin.

With homogeneous coordinates, you can specify a
retation, 4 aboutany point g =[q, dy 1) witha
matrix:
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1. Translate q to origin M - "J [:L\‘ Hér\]'_'i [./’C[)

2. FRotate
3. Translate back

Mote: Transformation order is important!!
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Points and vectors

Vectors have an additional coordinate of w=0. Thus,
a change of origin has noeffect on vectors.

Q: What happens ifwe multiply a vector by an affine

matrix?
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affine operations on pointsandvedors:
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One useful combination of affine operations is: |

vector + vector — Ve
scalar - vector —  Jilehpe

piti=p, +tu
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Basic 3-D transformations: scaling

Some of the 3-D affine tran sformations are just like
the 2-D ones.

Inthis case, the battom row is always [00 0 1].
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Translation in 3D

Rotation in 3D

T Rotation now has more possibilities in 30:
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" Rotation in 3D (cont'd) Shearing in 3D
'T({__- :
‘{\- How many degrees of freedom are there in an Shearing is also more complicated. Here is one
J v arbitrary rotation? example:
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We call this a shear with respectto the xz plane.




Properties of affine transformations

Here are some useful properties of affine
transformation s:

* linesmaptolines

* Parallel lines remain parallel

& Midpoints map to midpoints (in fact, ratios are
always preserved)
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ratio = M= 2.
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Affine transformations in OpenGL

OpenGL maintains a “modelview” matrix that helds the
current transformation M.

The modelview matrix is applied to points (usually
vertices of polygons) before drawing.

It is modified by comman ds including:

+ glloadldentity () Ml
- set Mto identity

* glTranzlatefit , t©, ) M« MT
- translate by (t, t, t,)

+ glRotatef(B8, x, ¥, Z) M« MR
- rotate by angle e about axis (x. v, 2)

+ gl3calefis , 3, =) M~ MS
- scale by (5.5, 5)

Mote that

pos tmultiplic

JpenGL adds tran sformations by
ition of the modelview matrix.

Summary

What totake away from this lecture:

* Allthe names in boldface.

* How pointsand transformations are
represented,

* How to compute lengths, dot products, and
cross products of vectors, and what their
geometrical meanings are.

& What all the elements of a 2 x 2 tran sformation
matrix co and how these generalize to 3x 3
transformations.

* What homogeneous coordinates are and how
they work for affine transformations.

* How to concatenate transformations.

* The mathematical properties of affine
transformations.
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