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Reading

Optional reading:
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Angel 4.1,4.6-4.10
Angel, the rest of Chapter 4
Foley, et al, Chapter 5.1-5.5.

David F. Rogers and J. Alan Adams,
Mathematical Elements for Computer Graphics,
2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.
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Geometric transformations

Geometric transformations will map points in one
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space to points in another: (x', y’, z') =f (x, y, 2).

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation

We can represent a point, p = (x,y), in the plane or
p=(x,y,2) in 3D space
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Canonical axes

Vector length and dot products
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Vector cross products
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Representation, cont.

We can represent a 2-D transformation M by a

matrix
a b
c d

If p is a column vector, M goes on the left:
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If p is a row vector, m’ goes on the right:
pl — pMT
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We will use column vectors.

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix

M:
x'| |a b x
y'| le dly
So:
x'=ax +by
y'=cx+dy

We will develop some intimacy with the elements
a,bcd...




Identity

Suppose we choose a=d=1, b=c=0:

+ Gives the identity matrix:

I

+ Doesn't move the points at all

Reflection

Suppose we keep b=c=0, but let either a or d go
negative.

Examples:
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Scaling

Suppose we set b=c=0, but let a and d take on any
positive value:
+ Gives a scaling matrix:
a 0
0 d

* Provides differential (non-uniform) scaling in
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Now let's leave a=d=1 and experiment with b. ...

The matrix
106 I
0 1 o |
gives:
x'=x+by
y'=y
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Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:
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Effect on unit square, cont.

Observe:

+ Origininvariant under M

+ M can be determined just by knowing how the
corners (1,0) and (0,1) are mapped

¢ aandd give x- and y-scaling
¢ band cgive x- and y-shearing
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Rotation

From our observations of the effect on the unit
square, it should be easy to write down a matrix for
“rotation about the origin”:
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows
+ Scaling
+ Rotation
+ Reflection
+ Shearing

Q: What important operation does that leave out?
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Homogeneous coordinates

We can loft the problem up into 3-space, adding a
third component to every point:

HEt

Adding the third “w” component puts us in
homogenous coordinates.

Then, transform with a 3 x 3 matrix:

A
x' X 1 0t || x
y ETO y (=10 1]t ||y
w' 1 00 11

.. gives translation!
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Affine transformations

The addition of translation to linear transformations
gives us affine transformations.

In matrix form, 2D affine transformations always look

like this:
a b t,
M=lc d t, |= i’—t}
0 0 1 !

2D affine transformations always have a bottom row
of [00 1]

An “affine point” is a “linear point” with an added w-
coordinate which is always 1:

e
p.
paff{ '1} y
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Applying an affine transformation gives another
affine point:
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Rotation about arbitrary points

Until now, we have only considered rotation about
the origin.

With homogeneous coordinates, you can speafy a
rotation, ¢,about any point q = [q, dy 1] with a
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1. Translate q to origin
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2. Rotate Y Y
3. Translate back KC(X> CoSO\ ~Sins O
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Note: Transformation order is important!! .

Points and vectors

Vectors have an additional coordinate of w=0. Thus,a
change of origin has no effect on vectors.

Q:What happens if we multiply a vector by an affine
matrix?

These representations reflect some of the rules of
affine operations on points and vectors:
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vector + vector
scalar - vector
point - point
point + vector
point + point
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One useful combination of affine operations is:

p(t)

=p, +tu

Q:What does this describe?
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Basic 3-D transformations: scaling

Some of the 3-D affine transformations are just like
the 2-D ones.

In this case, the bottom row is always [00 0 1].

For example, scaling: 56") 5:7/ SZ_> S-(_l LU
”s7/§z>
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Translationin 3D
X 1 00 X
y'|1 |0 10 y
z'|7lo 0 1 z
1 00O 1
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Rotation now has more possibilities in B:
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A general rotation can be specified in terms of a
prodcut of these three matrices. How else might you
specify a rotation?
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Shearing in 3D

Shearing is also more complicated. Here is one
example:

x' 1 b 0 Ofx
y' 01 0 Of|ly
z| |00 1 0]z
1 0 0 0 11
v ¥

We call this a shear with respect to the x-z plane.
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Properties of affine transformations

Here are some useful properties of affine
transformations:

¢ Lines map to lines
¢ Parallel lines remain parallel

* Midpoints map to midpoints (in fact, ratios are
always preserved)
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Affine transformations in OpenGL

OpenGL maintains a “modelview” matrix that holds the
current transformation M.

The modelview matrix is applied to points (usually
vertices of polygons) before drawing.

It is modified by commands including:

¢ glLoadIdentity() M« 1
- set M to identity

¢ glTranslatef (t,, t,, t,) M « MT
- translate by (t, t,, t,)

¢ glRotatef (8, x, y, z) M <« MR
- rotate by angle e about axis (x, y, 2)

¢ glScalef(s,, s, s,) M « MS
- scale by (s, s,, )

Note that OpenGL adds transformations by
postmultiplication of the modelview matrix.
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Summary

What to take away from this lecture:

+ All the names in boldface.

+ How points and transformations are
represented.

+ How to compute lengths, dot products, and
cross products of vectors, and what their
geometrical meanings are.

+ What all the elements of a 2 x 2 transformation
matrix do and how these generalizeto 3 x 3
transformations.

+ What homogeneous coordinates are and how
they work for affine transformations.

+ How to concatenate transformations.

+ The mathematical properties of affine
transformations.
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