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Reading

Requirad:
* Ancgeld.1,46-4.10
Further reading:

* Angel therest of Chapter 4
* Foley, etal, Chapter5.1-5.5.

* DavidF. Rogersand 1 Alan Adams,
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Geometric transformations

Geometric transformation s will map points in one
space to pointsinanother: iy ') = fix, y. 2.

These transformation s can be very simple, such as
scalingeach coordinate, or complex, such asnon-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.
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Vector length and dot products
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Wewill use column vectors.




Two-dimensional transformations

Identity

Here's all you get with a 2 x 2 transformation matrix
M:

Suppose we choose asd=1, b=c=0:

* Givesthe identity matrix:
X' _|a bl x
y' - c d ¥ 1 0
a1
So

x'=ax+ by

* Doesn't move the peints atall
¥'= o+ dy

Wewill develop some intimacy with the elements
abeod.
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Suppose we set b=c=0, but let g and d take on any
positive value:

Suppose we keep b=c=0, but leteither a or d go
negative.
* Givesascling matrix:

Examples:
a 0
0

+ Providesdifferential {(non-uniform) scaling in
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MNow let's leave a=d=1 andexperiment with b. . ..

The matrix

gives:
A'= x4 by
yl=y
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Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:
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Effect on unit square, cont.

Observe:

* Origin invariant under M

* M can be determined just by knowing how the
corners (1,07 and (0,1 are mapped

* gandd give x-andy-scaling

* bandc give x-andy-shearing

Rotation

From our ohservations of the effect on the unit
square, it should be easy to write down a matrix for
“rotation about the origin™
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Limitations of the 2 x 2 matrix

A2 x 2 linear transformation matrix allows

Scaling
Rotation
Reflection
Shearing

* & & @

Q: What important operation dees that leave out?

"{ FARS l,d’i"by\

Homogeneous coordinates

We can loft the problem up into 3-space, addinga
third component toevery point:

Addingthe third “w” component putsusin
homogenous coordinates.

Then, transform with a 3 x 3 matrix:
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... gives translation! ]

Affine transformations

The addition of translation to linear transformations
gives us affine transformations.

In matrix form, 2D affine transformations always look

like this:
vicle d A e
' 1o o)

001

2D affine tran sformation s always have a bottom row
of [00 1],

An “affine point” is a”linear point” with an added w-
coordinate which isalways 1:

Applyingan affine transformation gives another

affine point: i ) L}&_&E] Piin
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Rotation about arbitrary points

Until now, we have only considered rotation about — \ bV,
the origin. | {“\ oy
LI
With homogeneous coordinates, you can specify a
: I _ T
rotation, & aboutany point ¢ =[q,, dy 11" with a ﬂ [LN\ ot mme
matrix: Yo tap ©

1. Translate q to origin M - "‘[{i\ P\tg} —[<_T_\

2. FRotate
3. Translate back

Mote: Transformation order is important!!




Points and vectors
Vectors have an additional coordinate of w=0. Thus,
a change of origin has noeffect on vectors.

:What happens ifwe multiply a vector by an affine

b L}Tl.lk”]t [,a:“,l Vechr

These representations reflect some of the rules of
affine operations on pointsandvectors:

vector + vector — Veekor

scalar - vector —  wvegbpe i SHp = |
point -point . = wveekio

point+vector — s it =\JeHr
point+point = haoty i Xth=o

One useful combination of affine operations is:
piti=p, +tu

Q: What does this describe?
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Basic 3-D transformations: scaling

Some of the 3-D affine tran sformations are just like
the 2-D ones.

Inthis case, the battom row is always [00 0 1].

For example, scaling:
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Translation in 3D
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Rotation in 3D

Rotation now has more possibilities in 3D:
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A general rotation can be specified in terms of a Q o L
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Shearing in 3D

Shearing is also more complicated. Here is one
example:
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We call this a shear with respactto the xz plane.

Properties of affine transformations

Here are some useful properties of affine
transformation s:

Lines maptolines
Parallel lines remain parallel

& Midpoints map to midpoints (in fact, ratios are
always preserved)

)
la'r

ratio = M= 2.
far| ¢

Affine transformations in OpenGL

OpenGL maintains a “modelview” matrix that helds the
current transformation M.

The modelview matrix is applied to points (usually
vertices of polygons) before drawing.

It is modified by commands including:

+ glLoadIdentity () Ml
- 2t Mto identity

* glTranzlatefit , t©, ) M« MT
- translate by (t, t,. t,)

+ glRotatef(B8, x, ¥, Z) M — MR
- rotate by angle e about axis (x. v, 2)

+ gl3calefis , 3, =) M~ MS
- scale by (s, 5, 5]

MNote that OpenGL adds tran sformations by
postmultiplication of the modelview matrix.

Summary

What to take away from this lecture:

All the names in boldface.
How points and transformations are
represented,

* How to compute lengths, dot products, and
cross products of vectors, and what their
geometrical meanings are.

& What all the elements of a 2 x 2 tran sformation
matrix co and how these generalize to 3x 3
transformations.

* What homogeneous coordinates are and how
they work for affine transformations.

How to con catenate transformations.

The mathematical properties of affine
transformations.




