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What is an image?

We can think of an image as a fundion, £ from R2to
E.

* ([ ) givesthe intensity of a channel at
position (% ¥]

* Realistically, we expectthe image enly te ba
dafined ovar aractangle, with afinite range:

v fifa bl d] =2 [00]

A colorimage isjust three funciions pastedtogether,

We can write this as a“vectorwvaluad” funcion:
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Images as functions




What is a digital image?
In computer graphics we usually operate on digital
[discrat@) images:

* Samplaethespace onaregular grid

+ Quantize each sample [round to nearest
integar)

If cur samples are A apart, we can writethis as:

fli fl = Quantize] fif & j2) §

128

Image processing

An imaga procassing operation typically definesa
newimage gin terms of an existing image f.

The simplest operations are those that transform

each pixel in isclation, These pixel-to-pixel
operations can bewritten:

gl 1=t ¥l
Examples: threshold, RGEB — grayscale
Mote: atypical choice for mappingto grayscale isto

apply the ¥l telavision matriz and keep tha.
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MNoise

Irrage processing is also useful for noisereductionand
edge enbanement, We willfoous on these applications
farthe rermainder of the leaure, .

nd pepper noise
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Impulse noise
Cormrnon types of noise:

+ Salt and peppernose: contains mndom
ocourrenazs of blackand white piels

+ Impulse nose: contains mndom ocourrenoes of
white pixels

+ Gaussmn noise: variations inintensity dewn frorma
Gaussian norrmal distribution
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ldeal neise reduction




ldeal neise reduction

Practical noise reduction

Howr can wee "smocth” away naoise in a single im age?

A

Isthere a more abstract way to represent this sort of
operation? Of course there is!

Discrete convolution

One of the most commen methods for filtering an
image is called discrete convelution. [We will just
call this "convolution” from here on.)

In 10, canvolution is defined as:

gln]= flrl*hln]
=3 fln'lhln - n]

= Ef[n']h[n '—n]
whara A[n]= H[-n] "
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Discrete convolution

One can show that convolution has same convenient
propearties, Given fundions g b

a*h=h=*q
(a=b)*c=a={b=*c)

a*=(b+c)=a*b+a=c

Well make use of these properties later, .
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Convolution in 2D

In two dimensions, convolution becomes:

gln, m]= f[n,m]*kln, m]
=3 > fln' mThln-n'm-m
moon

= ZZf[n', m'bln'= n,m'=m]

whare Bl )= H-—n,—rm]

Convolution representation

Sincef and b are defined over finite regions, we can
wirite them out in two-dimensional arrays:

€[]
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MNote: This fs not matrix multipfication!
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Q: What happens at the boun dary of the image?

iEY

Mean filters

Howr can wee raprasent our noise-reducing averaging
as a convolution filter (know as a mean filten?
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Effect of mean filters

CGiaussian Saltand pepper
noise noise

5x5
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Gaussian filters

Gaussian filters weigh pixels based on their distance
from the center of the convelution filker, In
particular:

E—mz +n? )iz

hn,m]= =

This does a decent job of blurring noise while
preservingfeatures of the image.
What parameter controlsthe width of the Gaussian?

What happensto theimage asthe Gaussian filter
kernel getswider? b'[ arrite

What isthe constant C? What shouldwe set it to?

(-%¢ (he+m)26*
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Effect of Gaussian filters

Gaussian Salt and pepper
noise noise
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Median filters
A median filter oparates ovar an xxom ragion by
selectingthe median intensity in the ragion.

What adwantage does a median filter have cver a A
rrean filter? eutlees remivi : (58
w ’L'J )3 ?! r )

Isamedian filter a kind of convolution?

No
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Effect of median filters

Giaussian Salt and pepper
noise noise

3x3
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Comparison: Gaussian noise

Mean Gaussian Median

Comparison: salt and pepper noise

Chaussian Median
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Edge detection What is an edge? h 1'

Cne of the most important uses of image processing
is edgedatection:

* Really easy for humans
& Really diffi cult for computers

* Fundamental in computer vision
* |mportant in many graphics applications
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Q: Howw might you detect an edge in 107 d_ "R‘j {[HH‘E — %[n]
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Gradients

The gradient is the 20 equivalent of the derivative:
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Properties of the gradient

* |Usawvector lﬂ%l - P&ff L rmrT
* Points in the direction of matimum increase of | o (;_{

* Magnitudeisrate of increasa
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Less than ideal edges

How can wee approximate the gradientin a discrete -
image? 250
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Steps in edge detection Edge enhancement

Edge detection algorithms typically proceed inthree
or four steps:

+ Filtaring: cut down on noise

+ Enhancement: amplify the differen ce between
edges and non-adges

* Dataction:use athraeshold operation

* Loalization (optional): estimate gaometry of
adges az 10 contours that can pass betwaen
pixels

A popular gradient filter isthe Sobel operater:

-1 01

§.=|-2 0 2
-1 01
121

§,=l0 0 0
-1 -1 -1

We can then compute the magnitu de of the vector

(5.5).

Mote that these operators are conveniently *pre-
flipped" for convolution, soyou can directly slide
these across an image with out flipping first,




Results of Sobel ed ge detection
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Second derivative operators
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The schel oparator can produce thick edgas. Idaally, _a;

wie're looking for infinitely thin boun daries. )
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Q: Howw might we write this as a convolution filter? 1"\
XX

An alternative approach iste look for local extremain
the first derivative: places wherethe change in the
gradient is highest,

Q: A peakin thefirst derivative corrasponds to what
in the second derivative? 0

Localization with the Laplacian

An equivalent measure of the second derivative in 2D 3 F’!., h ‘*’IT
xx

is the Laplacian:
; N
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Usingthe same argu mentswe usedto&omputethe ?____ N l’\ _"
gradient filters. we can derive a Lapladanfilterto be: .;1){7' o
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(The symbol Ais often used torefartothe discrete 1
Lapladian filter) a ﬁ
)c\u L L
Zaro crossingsin alapladan filkeredimage can be -1
usedtolocalize edges. [ | L‘k
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Localization with the Laplacian

Laplar:lan +128)
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Sharpening with the Laplacian
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Why does the sign make a differen ce? -l o

How can wou write the filter that makes the
sharpenad image?
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Summary

What you should take away from this lecture:

The meanings of all the boldfaced terms.

Howe noise reduction is done

Howr discrate convolution filtering warks

The effect of mean, Gaussian, and median filters

What an image gradientis andhow it can be
computed

* How edge detaction is done

* What the Laplacian image is andhow it is used
in either edge detection or image sharpening
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