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Reading

Requirad:

* Angel121-12.3,1252,126-127, 129

Optional

* Bartels, Beatty, and Barsky. An introduction to
Splines for use in Computer Graphics and
Geometric Modeling, 1987.

& Farin. Curves and Suraces for CAGD: A Practical
Guide, 4th ed, 1997,

Curves before computers Mathematical curve representation
The “loftsman’s spline”: * Bplicit y="x)
. « what if the curveisn't a function, eg, acircle?

+ long narrow strip ofwood or metal y V

* shapedby lead weights called "ducks”

* gives curveswith second-order continuity, N N

usually - x
Usad for designing cars, ships, airplanes, etc. o Implicit gixy) =0 \]
{#
But curves based on physical artifacts can't be ] 2 2 1 . Fi ) \b'.l "
replicated well, since there’'s noexact definition of f’frﬁj-a )( - :f = ’ J {JPB
what the curve is. L 2 li)"
Lypgk_ / \ Lr
()= x =" \ .
Around 1960, a lot of industrial designers were j ’ ‘} R - :g‘-’
working on this problem. e A L ¥
: s T
Today, curves are easy to manipulate on a computer & Parametric Q) = (xiuy(u) f\xtm\;
and are usedfor CAD, art, animation, ... « Forthe circle: 1
xfu) =cos 2nu b
yiu) =sin 2y
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Parametric polynomial curves
we'll use parametric curves, Qlu)=(uiyiu) where
the functions are all polynomials in the parameter.
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xu)=>" n-t
= A\ [:)‘I'I ) - z ﬂ{ d‘u

1]
yiu =3 bt du
par]

Advantages:

* easy land efficient) to compute

+ infinitely differentiable (all derivatives above
the nth derivative are zero)

We'll also assume that uvariesfrom 0 to 1.

Mote that we'll focus on 2D curves, but the
generalization to 3D curves is completaly
straightforward.

de Casteljau’s algorithm

Y, VY, uw\
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Recursive interpolati on: 3)

whatifu—0? (X [03 = lJa
whatfu-1z - QL1 = vj,
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de Casteljau’s algorithm, cont’d

Recursive notation:

What is the equation for /)7

l:rl’\(v[ruo\ +V, = ('rﬂ\ﬂo% M\J1

Finding Q(u)

Let's solve for Qiuk

Vo = (T-ulV + i
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VY = (1w, + uV,
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Finding Q(u) (cont'd)

In general,

" ny .
Q=37 pi-u"™vy,
=i

=il

where ‘n choosa 7 is:

i n!
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This defines a class of curves called Bézier curves.

What's the relationship between the number of
control peints and the degree of the polynomials?

oA
clejfzc N <:) N+ | contrl R

Bernstein polynomials

We can take the pelynomial form:
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Quy=~" [ , Ju' 1-uw"v
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and re-write it as:

Qi) =26 (WY

Tl

where the b;(uj are the Bernstein polynomials:
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bHu = [ ) Ju‘ 1—u™
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We can also expand the equation for Q(uw) to remind
usthat it is composed of polynomials x{uw) and yiu):
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Bernstein polynomials, cont’d

Fordegree 3, the Bernstein polyrnomials are:
Biuy=01-up
Bluwi=3ull-u)f
B uwi=3u1-w

E Y o
17! wy=1u

Useful properties (for Bernstein polynomials of any degres)
on the interal [0,1]:

n“" ﬂ;{]{{ﬂ[ 5* Thesumaf all fourisexactly 1 forany u. (We say the
‘4—} .

curves forma “partition of unity™).

*  Each polynomial has values betwesnOand 1.

These together imply that the curve
convex combinations of the cont
lies within the conwvex hull of those co

Jeremted by
sints and thersfore
trol points,

The convex hull of a point setis the smallest convex

polygon (in 200 or palyhedron (in 3 D) enclosing the points.
In 20 think of a string looped around the outsideof the
point set and then pulled tightly around the s=t.

Displaying Bézier curves

How could we draw one of these things?

W =0, p.0l o8 -— L.O

de Casheljan
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Adaptive Sampling of Bézier curves

Suppose the control points are aranged as follows:

How many line segments do you really need to draw?

Itwould be nice if we had an adaptive algorithm, that
would take into account flatness.

DisplayBezien VO V1, V2 V3 )
begin
if { FlatEnough{ Wo, V1. W2, W3 )
Line( VoL W3 )
else

Subdivide and conquer

CisplyBeziern v, V1, ¥2, V3 )
begin
if ( FlatEnoughi Vo, W1, W2, v3 )
Line( VoL W3 )
alsa
Subdivide (/[1) = L1 R[]
CisplayBezier( L0, L1, L2, L3 )

. DisplayBezier( RO, R1. R2, R3 )
meathing,
50 g end;
end;
13 14
Testing for flatness Curve desiderata
Bezier curves offer afairly simple way tomodel
parametric curves.
But, let's consider some general properties we would
like curvesto have...
Compare total length of contral polygon to length of
line connecting en dpoints:
W, -]+ |I'u‘,—'|:'; |+, V| clee
|"'ro - "'rA|
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Local control

one problem with B2ziers is that every control point
affects every point on the curve fexcept the
endpoints).

Movinga single control point affects the whole
curve!

We'd like to have local control, that is, have each
control point affect some well-defined neighborhood
around that point.

Interpolation

Bezier curves are approximating. The curve does
not (necessarily) pass through all the control points.
Each point pulls the curve toward it, but other points
are pulling as well.

Wwe'd like to have a curve that is interpolating, that
is. that always passes through every control point.
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Continuity 15t and 2™ Derivative Continuity
Wewant our curve to have continuity: there First order continuity implies continuous first
shouldn't be any abrupt chan ges as we move along derivative:
the curve, dtiu
Q'lu)= _f't'
u

*Oth order” continuity would mean that curve dossn't ‘
jump from one place to another. Let'sthink of uas"time” and Qiu) as the path of a

particle through space. What is the meaning of the

ﬁ —\/‘ first derivative, andwhich way does it point?
/\ SQQ!A
{ ! ln e ity =
o C° [ W) = veloei y dﬂ,f.;jh
L} —{-Nq. 8a.':"

We can also look at derivatives of the curveto get JJ b
higher order continuity. "

Second order continuity means continuous second

derivative:

120 (u)
Q"u)= t_.‘_Q' :
du®
What is the intuitive meaning of this derivative?
QA ((_ﬂﬂmjr‘fv A
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C" (Parametric) Continuity

In general, we define 7 continuity as follows:

Qi) is C" continuous
iff

ul is continuousfor 0= isn
N C—P

Mote: these are nested degrees of continuity:

Reparameterization

We have sofar been considering parametric
continuity, derivativesw.rt. the parameter w.

This form of continuity makes sense particularly if we
really are describinga particle moving over time and
want its motion (2.g., velocity andacceleration) to be
smooth.

But, what if we're thinking only in terms of the shape
of the curve? Isthe parameterization actually

u'E[“-H}

o N " N intrinsic to the shape, ie. isit the case that a shape
ha Iy arameterization? m
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Arclength parameterization G" (Geometric) Continuity
Qs Qg Mow, we define geometric G continuity as follows:
We can reparameterize a curve so that equal stepsin \ 2)
arameter space (we'll all this new parameter s L
parameter space (v el call this nev mra|11eter 57) 54 T Qis)is G" continuous
map toequal distances alongthe curve: .
i
S[S'l n d Qs
Qls) = As= 5,- 5= ,3-deﬂgm[Q.;5]j|_.Q.;51 ]] a5 = o is continuous for 3= i<n

We call this an arc len gth parameterization. We can
re-wiite the equal step requirement as:

arclength[Q(s,), Qls, |]
5275

Looking at very small steps, we find:

i ardength[Q(s,),Q1s, 1] ||dle1
= 5 =5 " ds

Where Qis) is parameterized by arc length.

The first derivative still points along the tangent, but
its length is always 1.

G" continuity is usually a weaker constraint than &7
continuity ie.g. “speed” along the curve dess not
matter).




G" Continuity (cont'd)

The second derivative now has a specific geometric
interpretation. First, the "osculating drcle” at apoint on
acurve can be defined based on the limit behavior of
three points moving toward each other:

0(s,,5,,5,)

..-’f , ) _._/'-. ™ ) 05

s, J\\\,// \\ / N (‘jtf
(s

Q':Sz 1 ':'I: sj]

O(si= lim Ois,s,,5,)
5% 5 i

The second derivative &(s) then has these properties:
e ( 1 " . .
|Q%is)|=x(s)= e 0"(s) ~ €(s)— Q(s)
s

where risyand efs) are the radiusand center of O(s),
respactivaly, and xis)isthe “curvature” ofthe curve ats.

we'll focus on C7 (2., parametric) continuity of curves
for the remainder of this lecture.

Bézier curves = splines

Bezier curves have C-infinity continuity an their
interiors. butwe saw that they do notexhibit local
control or interpolate their control points.

It is possible to define points that we wantto
interpolate, and then solve for the Bézier control
pointsthat will do the job.

But, you will needas many control points as
interpolated points -» high order polynomials -
wiggly curves. (And you still won't have local
control.)

Instead, we'll splice together a curve from individual
Beziers ssgments, in particular, cubicBeziers.

We call these curves splines.
The primary concem when splicing cuves together is

getting good continuity at the endpoints where they
mest...

26

Ensuring C° continuity

Suppose we have a cubic Bazier defined by

(Vg Vo V3l and we want to attach anaother curve
(W W W, W to it so that there is O continuity at
the joint.

':__D . Q.r(” = Q,l-’ (O:I

What constraint(s) doesthis place on (Wi W W, W57

The C° Bezier spline

How then couldwe construct a curve passing
through a set of points 7. F,?

We call this curve a spline. The endpoints of the
Bezier segments are called joints. All ather Bezier
pointsiie. notendpoints)are called inner Bezier
peints;these points are generally not interpolated.

Inthe animator project, you will construct such a
curve by specifying all the Bezier control points
directly.




1% derivatives at the endpoints _a

For degree 3 (cubic) curves, we have already shown

that we get: Vs
Qlul= (- WV +3001-uPV + 300 -ulV, +uV,

Rl

Irance to get:

A

We can expand the terms in vandr

! T
Olu) = 3=V, +3¥,- 3V, + V00" +

each endpoint, u=0and u=17

Qo= (‘Sﬂhi‘g 'Irl\
= 3(V,-¥s)

Vo

Ensuring C' continuity

Suppose we have a cubic Bazier defined by
V.V V5 V3l and we want to attach another curve
(W W W Wl to it so that there is O continuity at

the joint.
o
_,_I;_I:| ] 'g <

I

What constraint(s) doesthis place on { Wi W W, W07

a1~ a0y > 30,0

30

The C" Bezier spline

How then couldwe construct a curve passing
through a st of points 7. F,?

We can specify the Bezier control points directly, or
we can devise ascheme for placing them
automatically...

Catmull-Rom splines

Ifwe sateach derivative to be one half of the vector
between the previous and next controls, we geta
CatmullRom spline.

This leadstao:




Catmull-Rom to Beziers

We can write the Gtmull-Rom to Bezier
transformation as:

Endpoints of Catmull-Rom splines

We can see that Catmull-Rom splines don't
interpolate the first and last control points.

W 0 1 o o f E‘, repeatilng those control points, we can force

e L . interpolation.

Wwl_|-ve 1 ve o (IR

Vi o e 1 -Val[H

14T 1)

I o o 1 o ||A

VoM sl A P
J
Pa
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Tension control Ve 2™ derivatives at the endpoints

-

We can give more control by exposingthe derivative
scale factor as a parameter:

Vi =h

- T = T
Vi=R+3(R-R)

_p_Eip.p
Vy=P-3(R-R)

p b
V=P,

The parameter t controls the tension. Gtmull-Rom
uses t=1/2. Here'san example with t=3/2.

Finally, we'll want to develop €2 splines. To dothis,
we'll need secon d derivatives of Bazier curves.

Taking the second derivative of Q{u) yields:

Q01 =601, -2V, +V,)
= —6[['H'I —'14'0] +|:'|J'I —'u’z:l]
2% = 6|:'|-"| - 2'#; + 'r"; j

T TR TARTE
= 6[[12 W, 1+ (V) ||.|]

FRCIOREA T AN
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Ensuring C2 continuity

Suppose we have a cubic Bazier defined by

(V¥ V5 V3l and we want to attach ancother curve
(W W W W to it so that there is O continuity at
the joint.

3, (=030
e, (M=)
0, =0,(0

What constraint(s) doe“s tq is place on { Wi W W, W07

AL

Building a complex spline

Instead of specifyingthe Bzier control points
themselves, let's specify the corners of the Aframes
in orderto build a ¢ continuous spline.

These are called B-splines. The starting set of points
are called de Boor points.

B-splines

Here is the completed B-spline.

By Wy vy B
. . . -

B . s » - -
By By

What are the Bzier control points, in terms of the de
Boor points?

W=__B+___ B
VL= B+ &
Vi=_ B+ B+ B

349

B-splines to Beziers

We can write the B-spline to Bezier transformation as:

Vil [we 2/3 156 0 [E]
v 0o 23 1z 0 ||g
Vil e 1z 23 o ||A]
vy 0 Ve /3 s E]
V=M, .. B

40




Endpoints of B-splines

Aswith Catrmull-Rom splines, the first and last control
points of B-splines are generally not interpolated.

Again, we can force interpolation by repeating the
endpeints... twice.

Closing the loop

What if we wanta dosed curve, ie. aloop?

With Catmull-Rom and B-spline curves, this is easy:

B, ¥y Va By
Vi ¥y . By
B & . - - H
By 8
41 42
Curves in the animator project
Inthe animator project, you will draw a curve on the
screen: 7
Qlul = x{u), ylu) @
¥ ou will actually treat this curve as:
dul= ylu) x
tu)= x(u) +

Where & isavariable you want to animate. We can
think of the resultas afunction:

&t)

In general, you have to apply some constraints to
make sure that &t)actually is a function.




Summary

What to take home from this lecture:

-

Geometric and algebraic definitions of Bézier
curves.

Basic properties of Bézier curves.

How to display Bezier curves with line
segments.

Meanings of Ck continuities.

Geometric conditions for continuity of cubic
splines.

Properties of B-splines an d Catmull-Rom
splines.

Geometric construction of B-splines and
Catmull-Rom splines.

How to construct closedloop splines.




