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Reading

Requiract

* Angelreadings for “Parametric Curves” lecture,
with emphasison 1212, 12.1.3,121.5,1256.2,
12.7.3, 1294,

Optional
* Bartels, Beatty, and Barsky. An introduction to
Splines for use in Computer Graphics and
Geometric Madeling, 1987

)

Mathematical surface representations

* Explict z=xy) (@.ka. a height field")
+ whatif the curve isn'ta function, like a sphere?
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Surfaces of revolution

4k

Idea: rotate a 2D profile curve aroundan axis.

What kinds of shapes can you model this way?




Constructing surfaces of revolution

R,z ()

Let A 8 be a rotation about the y-axis.

Find: A surface Siuvi which is Clu) rotated about the
y-axis.

Solution: S (u) v\ :R} (_11] \f\] C (UL)

Isoparameter curves and tangents

We can follow curves where vis constant.and u
varies or vice versa. These are called isoparameter
curves (where one parameter is held constanty:

Ifwe sample atequal spacing in wandy, we can
create a quadrilateral mesh (ora triangle mesh).

We can compute tangents tothe surface atany point
by locking at {infintesimally) nearby points.

Holding one parameter constant, we can find nearby
points by varying the other parameter. Thus, we can
gettwo tangents

How would we compute the normal?
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General sweep surfaces

The surface of revolution isa special case of a
swept surface.

ldea: Trace out surface S(uwv) by moving a profile

curve J(u) along a trajectory curve T(v).
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More specifically:
* Suppose that Ju) liesinan (x.y,) coordinate
system with origin &

& Forevery pointalong Tiv, lay Gu) so that O,
coincideswith T{v).

Orientation

The big issue

* How to orient C{uas it moves along Tiv)?

Here aretwo options

1. Fixed (or statick: Justtranslate O along Tiw.
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2. Maoving. Use the Frenet frame of T{v).

* Allows smoathly varying orientation.
* Permits surfaces of revolution, for example.




Frenet frames

Motivation: Given a curve Tyl we wanttoattacha
smoothly varying coordinate system.
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To geta 3D coordinate system, we need 3
independent direction vectors.

Tangent  tv)= normalize[T v}
Binormal: b(

j=normalize[T{vi= T
Mormal  nivi=hivixtiv)

Aswe move along Tiv) the Frenet frame (t.bun) varies
smoothly.

Frenet swept surfaces
Orient the profile curve Clw) using the Frenet frame
of the trajectory T(v}

* Put Ju) in the normal plane .
* FPlace O on Tv).

& Alignx, for Suj with b,
* Aligny, for Gu) with -n.

Mormal plane

If Tivjisa circle, you geta surface of reveolution
axa ctly!
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Degenerateframes

Let's look back at where we computed the
coordinate frames from curve derivatives:
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Where might these frames be ambiguous or
undetermined?

Jor your  Coifenplton

Variations

Several variations are possible:

* Scale D) as it moves, possibly using lenath of
Tiv)as a scale factor.

* Morph ) into some other curve Sunasit
movesalong Tiv).




Tensor product Bézier surfaces
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Given a grid of control points V, forming a control net,
constructa surface S(u.v) by:

+ treating rows of V (the matrix consisting of the V)
as control points for curves Vyu...., Vyiu).

* treating V(... V,wias control points fora curve
parameterized by v.

Tensor product Bézier surfaces, cont.

Let's walk through the steps
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Control polygon at u=1/2 Curve at 5(1/2,%

Which control points are interpolated by the surface?

U corntrs
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Polynomial form of Bézier surfaces Tensor product B-spline surfaces
Recall that cubic Bézierc urves can bewritten interms of . + Aswith spline curves, we can piece togethera
the Bemstein polyromials: f’g.ﬂl-"‘-’ o\ ng sequen ce of Bazier surfacestomake a spline surface.
Ifwe enforce & continuity and local contral, we get
n J/ B-spline curves:
Qfu)=3"hiu . H net
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Atensor product BEzier surface can bewritten as:
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In the previous slide, we constructed curve s along . and
then along v. This corresponds to regouping the terms
like so:
n n
Stuvi=2" [Z' Lb u]J b.v)
=0 Ao & freatrows of Bas control pointsto generate
Bezier control points in w.
But, we could have constructed them along v, then u: * treat Bezier control pointsin uasB-spline
control points in v,
Sl '.—T"‘ v"..‘, oy | bt * freat B-spline control pointsin vto generate
! = LN v, Luy . - .
= | = ‘ Bezier control points in u.
¥
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Tensor product B-spline surfaces, cont.

Which B-spline control peints are interpolated by the
surface?

Tensor product B-splines, cont.

Anather example:

NURBS surfaces

Uniform B-spline surfacesare a special case of NURBS
surfaces.

Trimmed NURBS surfaces

Sometimes, we want to have control overwhich parts
of a MURBS surface get drawn.

For example:
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We can dothis by trimming the u-v domain.

* Define a dosed curve in the u-v domain (a trim
curve)

+ Donotdraw the surface points insice of this
curve.

It's really hard to maintain continuity in these regions,
espedally while animating.
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Summary

Whattotake home:

* How to construct a surface of revolution
* How to construct swept surfaces from a profile
andtrajactory curve:
with a fixed frame
with a Frenet frame
* How to construct tensor product Bézier surfaces

*+ How to construct tensor product B-spline
sufaces




