Particle Systems

Brian Curless
CSE 457
Spring 2011

Reading

Requirad:

& Witkin, Particle System Dynamics, SIGGRAPH ‘01
course notes on Physically Based Modeling.

* Witkin and Baraff, Dierential Bguation Basics,
SIGGRAPH 01 course notes on Physically Based
Modeling.

Optional

+ Hockney and Eastwood. Computersimulation
using particles. Adam Hilger, Mew York, 1988,
+ Gavin Miller. “The motion dynamics of snakes

andworms” Computer Graphics 22:169-178,
1988,

(%]

What are particle systems?

A particle system is a collection of point massas that
obeys some physical laws (e.g. gravity, heat
convedion, spring behaviars, ...).

Particle systems can be used to simulate all sorts of
physical phenomena:

Particdle in a flow field

We begin with a single particle with:

|:x:|
osition,
¥

o Veloci v—)'c—dx— dx fdt
elocity, v= “at " |dy st

Suppose the velocity is actually dictated by a driving
function, a vector flow fizld g:

X =g(x,1)

:{{{’0\)
X')
X

Ifa particle starts at some point in that flow field how
should it move?

Diff eqs and integral curves

Theequation
X=g(x,7
is actually a first orderd ifferential equation.

We can solve for x through time by starting at an

Euler's method

Cne simple approach isto choose atime step, At andtake
linear steps along the flow:

X+ At =x(t)+ hx = x(r1+ﬂr-&
—_— - — Ay

— mx(t)+ At x(t) - 10

rX(F)+ AT - gixir) 1)
Writing as atime iteration:

initial pointand stepping along the vector field: X*ox +At-g with g, _ g(xf,r —iAD) XK'= X(iﬂt’\j
Start Here Thisapproach is called Euler's method an d looks like:
L. Froperties:
This is called an initial value problem andthe
solution is called an integral curve. & Simplest numerical method
& Bigger steps, biggererrors. Error ~ O{h).

Meed totake pretty small steps, so not very efficient. Better
{more complicated) methods exist, e.qg. adaptive timesteps,
Runge-Kutta, and implicit integration. 6

Particle in a force field Second order equations

MNow consider a particle in aforce field f. This equation:

In this case, the particle has: R (4% %3]

e —
* Mass, m m
. L . dv d'x
* Acceleration, asx=v= P
f g is a second order differential equation.
The particle obeys Newton's law: Our solution method, though, worked on first order
. differential equations.
f=ma=mk = M
_ _ We can rewrite the second orderequation as:
So, given a force, we can solve for the acceleration:
%= f X=V N v x=v
" - f(vaJrJ or |:-:|= 'F(](J'JJ” _:}] - 'E-{'-'\]I
The forca field f can in general depend on the = v e —
m m L)

position and velocity of the particle as well as time.

Thus, with some rearrangement, we end up with:

§= fix,x,1)
m

where we substitute in v and its derivative to geta
pair of coupled first order equations.

Phase space Differential equation solver

Starting with:

Fi| |: ; }
X Concatenate xandvtomake a v fim
G-vaector:position in phase space.))

v Applying Euler's meth od:

Wir+ A= X+ A%t
Taking the time derivative: another Wi+ Af) = x(f)+ Ar-X()
v G-wector.

And making substitutions:

X(t+ A0 s x(t+ A v(t)

X v . . .
— Avanilla 1°'-order differential)) L fix(t),wit),)
Y 8 i i i . :
v f/m| equation. vit+Ar) = wit]+ At e
Writingthis as an iteration, we have:
X =x' + v _ o
¥ with f=fx vt
v =v' A —
m
Again, performs poorly for large At
9]
Particle structure Single particle solver interface
How do we represent a particle?
getDim [6]
X
e v
' Position in phase space | f getstate [x:|
H ' _-____-_____'_'—-P
1 x ,— iti I +_-__-____'——_
i position | m setState v
)V tteloaty ,' '
+——forcea ator] v
f force accumulator derivEval
m |[+—— mass £im

Sya = 9 S D)

Shew = Sous * ae- dernBunll)
AEw o

Particle systems

In general, we have a particle system consisting of n
particles to be managed over time:

X || X2 Xy
Vil Ya | |V
f|f f,
m L, my,

Particle system solver interface

For n particles, the solver interface now looks like:

1/5etState)
Ea getDim
cerivEval
an
xH v X, v X, VnJ
f f f
1 2 n
v, — Vv, — v,
m, m, m,

Particle system diff. eq. solver

We can solve the eveolution of a particle system again
using the Euler method:

[x*] [x] [

+1 i
v, v, f/m
=| : |+Ar
i+1 i
xI'I X n vl'l
i+1 i i
il v n fn’{l‘rnn

5%#&(9@4-54,,1_&3 s ak LervEval ()

Forces

Each particle can experience aforce which sends it
on its merry way.
Where dothese forces come from? Some examples:

* Constant (gravity)

* Position/time dependent (force fields)
* \elocity-dependent {drag)

& M-ary (springs)

How dowe compute the net force on a particle?

S\u«.hu "ﬂ‘l-‘- U\P
=) Prﬁm,llPlra .ﬂL' éuperfps}v'-fn

Particle systems with forces

Force objects are black boxes that point to the
particles they influence and add in their
contributions.

We can now visualize the particle system with force
objects:

Gravity and viscous drag

The force due to gravity is simply:

f..=mG

p—=f += p->m * F->G

Often, we want to slow things down with viscous drag:

f;

] = _ku' v

i}

|p->f -= F->k * p—>v |

X .
1 : ! ‘{_J oV —gdm
V'I VE n J
L f, M(S. = {—Kdnjv’j
m, || m, m,
17 18
Damped spring derivEval
Aspringisasimple examples of an “N-ary” force.
Recall the equation for the force duetoa 1D spring: 1. Clearforces _
+ Loop over particles, zero force
fmmk ol =1 r=re stlength accumulators
% 2. Calculate forces
With damping: {T) + Sumall forcesinto accumulators
o - 3. Retum derivatives
= ~guing (X =1 B] - Loop over particles, return v and f/m
In 2D or 3D, we get: Foe a4
g LI I Kn Clear force
. v, v, v, accumulators
r & —| Ax=x,—X =0|f=0] |f,=0]
= |:\|' :| 1 2 | f; £ n fafa-s
1 ﬂx L I'I]I 1 I'IE B L l'lln i j
A = _ -l
py=|7 Av=v —v 1
v, Apply forces
to particles % %] [*.

="

=_|:k$"r'n:.'[”‘0‘x||_ A K*ﬂp[ﬂv"&k)]ﬂ‘i
f=—t

Mote: stiff spring systems can be very unstable under
Eulerintagration. Simple solutions indude heawy
damping (may not look good), tiny time steps (slow),

or better integration (Runge-Kuttais straightforward). I

\ Y ..
. EVH. ik f,
d m

£ F N/ f Return derivatives
1 | 2 [tn
ol | [, tosolver

20

Bouncing off the walls

Handling collisions is a useful add-on for a particle
simulator.

For now, we'll just consider simple point-plane
collisions.

Aplane isfully specified by any point P on the plane
anditsnormal N.

Collision Detection

How do you decide when you've macde exact
contact with the plane?

(AR

X-N-PN=0
XN=pN ¢
- oty FCFT
21 ".J' X K ;{ 22
Normal and tangential velocity Collision Response
To compute the collision response, we need to
consider the normal and tan gential components of a
particle’s velocity. =K iV
before after
The response to collision is then to immediately
replace the current velocity with a new velodity:
r
V=V KoV
The particle will then move according to this
velocity in the next timestep.
23

Collision without contact

In general, we don’t sample momentsin time when
particles are in exact contact with the surface.

There are a variety of ways to deal with this problem.

The most expensive is backtracking: cetermine if a
collision mu st have occurrad, and then roll back the
simulation tothe moment of contact.

A simple alternative is to determine if a collision must
have occurredin the past, andthen pretend that
you're currently in exact contact.

Very simple collision response

How do you decide when you've hada collision
during a timestep?

A problem with this approach is that particles will
disappear under the surface. We can reducethis
problem by essentially offsetting the surface:

[K-P}- N<LE Shounce

Also, the response may not be enough to bring a
particle to the other side of awall In that case,
detection shouldinclude avelocity check:

VNSO D den't bewnce

(K——\PB N = Sijr\d
iShpce

from
Plane

25 26
More complicated collision response Particle frame of reference
Ancther solution is to modify the update scheme tor Let's say we had our robot arm example andwe
wantedto launch particles from its tip.
+ detect the future time and point of collision
+ reflect the particle within the time-step
How would we go about starting the particles from
the right place?
First, we have to look at the coordinate systemsin
the OpenGl pipeline...
\
AtV
28

The OpenGL geometry pipeline

Maodel space
(Dbject space)

Miyedef

)
™S e
)

M,

W

M fnddvicw =

Mu;w M

Mokel

Projection and modelview matrices
Any piece of geometry will get transformed by a

sequen ce of matrices before drawin g:

P'= My gject Myiowy Miycdal P

The first matrix is Open GL's GL_PROJECTICN matrix.

The second two matrices, taken as a product, are
maintained on OpenGL's GL_MODELVIEW stack:

Miodeteien = Myiew Minodel

A0

Eyespace
[View space])
Mormject
)
I r Normalized projection space
‘s
A 29

Robot arm code, revisited
Recall that the code for the robot arm looked
something like:

glBotatefl theta, 0.0, 1.0, 0.0 };

base (hl) ;

glTranslatef(0.0, hl, 0.0 };

glBotatef] phi, 0.0, 0.0, 1.0 };

wpper armihZ);

glTrans=slaref{ 0.0, hZ, 0.0 1;

glPotatef(psi, 0.0, 0.0, 1.0);

lower armi{h3):
All of the GL calls here modify the modelview matrix.
Mote that even before these calls are made, the
modelview matrix has been modified by the viewing
transformation, M-

3l

Computing the particle launch point

To find the world coordinate position ofthe end of the
robot arm, you need to follow a series of steps:

1. Figure outwhat M, is before drawing your model.

Mview

Matdf matCam = glbetlModelViewllatrixi();

2. Draw your model and add one maore tran sformation
tothe tip of the robotarm.

glTranslacef{ 0.0, h3, 0.0 };

3.Compute M. = M.',.L“.M

mode ke
Matdf parcicleXform = getWorldformi{mstCam) ;

4. Transform a peint at the origin by the resulting
matrix.

Vecdf particlelrigin = particleXform * WecZ£{0,0,0);

Now you're ready to laun ch a particle from that last
computed point!

Summary

What yvou should take away from this lecture:

The meanings of all the boldfaced terms

Euler method for solvin g differential equations
Combining particles into a particle system
Physics of a particle system

various forcesacting on a particle

simple collision detection

* & & & 2 B

How to hook your particle system into the
coordinate frame of yvour model

RE}

