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The pinhole camera

The first carrera - “camera cbscura” - known to Aristotle.
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Pinhole camera

In 30 we can visualize the blur induced by the pinhole
{aka. apertura):
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Q: Howewould we reduce blur?
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Shrinkingthe pinhole
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Q:'What happens as we continue to shrink the aperture?




Shrinkingthe pinhole, cont’'d
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Imaging with the synthetic camera

In practice, pinhole cameras require long exposures,
can suffer from diffraction effects, and give an
inverted image.

In graphics, none of these physical limitationsisa
problem.

The image is renderad onto an image plane (usually
in front of the camera).

Viewing raysemanate from the center of projection
(COF)atthe center of the pinhole.

The image of an cbjed peint £ is at the intersection
of the viewin g ray through £ andthe image plane.

But is P visible? This the problem of hidden surface
removal (aka. visible surface determination).
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Ray casting

One way to simulate the pinhole cameraand
determine which point isvisible at each pixel isray
casting.

Ickea: For each pixel center Py
+ Send ray from eye point (COP), € through Py
into scene.
* Intersect ray with each object.
* Select nearestintersection.

Ray casting, cont.

Implementation:

*+ Might parameterize each ray:
Fti=C+1 iPI.J.- ]

where t = 0.

# Each object O, returns t, =0 such that first
intersection with Oy, occurs at rit,).

Q: Given the set {t, what isthe first intersection point?
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Warping space

A very different approach isto take the imaging setup:

then warp all of space so that all the rays are parallel
iand distant objects are smaller than closer objects):

andthen just draw everything onto the image plane,
keepingtrack of whatisin front:
i,
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3D Geometry Pipeline
Graphics hardware follows the “warping space” approach.

Before being turred into pixels, a piece of geometry goes
through a number of transformations...
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3D Geometry Pipeline (cont'd)

Projective transforiation,
il translare

Normalized deviee space

Project,
scale, Iranileate

Image or screen space

World -> eye transformation

Let's look at how we would compute the world-=eye
transformation.
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gluLookAt

To specify the world-=eye transformation, OpenGL hasa
helper command:

gluLookAt {eyex, eyey, evez abr, aty, atz, upx, upy, upz )
To simplify natation, we'll re-write as:

gluLookAt (e a, u)

Projections

Projections transform points in n-space to m-space,
where m<n.

In 2-0, we map points from 2-spacetothe
projection plane (PP} (ak.a, image plane) along
projectors (aka. viewing rays) emanating from the
center of projection (COP):
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There are two basic types of projections:
N
e (v ) & Perspective - distan ce from COP to PP finite
@/ * Parallel - distan ce from COP to PP infinite
i
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Parallel projections Z-buffer
or '-m»-jﬁ.-k;c
For parallel projections, we specify adirection of The Z-buffer or depth buffer algorithrm Catmull, 1974]
projection (DOP) instead of a COP. - e::nhlelt{léxl—}l to determine which surface point is visible at
z ch pixel.
There are two types of parallel projectionss: = Here is pseudacade for the Z-buffer hidden surface
algorithm:
+ Orthogra phic projection - DOP perpendicular
to PP -] “.’1 wt for each pixel (i) do
¢ Oblique projection - DOP not perpendicular Z-buffer [ij] < FAR
to PP

We can write orthographic projection onto the z=0
plane with a simple matrix.
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MNormally, we do not drop the zvalue right away.
Why not? R
! visib 1 \
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Frame but

ferlij + <background color:
endfor

gonA do

foreach po
foreach pixsl inA do
Computedepth zofA at (i)
ifz > 7 buffer [ij] then

Z-huffer [ij

Framebuffer[ij] = colorof A
andif
end for
endfor

Q:What should FAR be set ta?
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Rasterization

The process offilling in the pixels inside of a polygon
is called rasterization.

During rasterization, the z value can be computed
incramantally (fast!).
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Curious fact:

¢ Described asthe "brute-force image space
algorithm” by [555]

*+  Nentioned onlyin Appendix B of [S55]as a point
of comparison for huge memearies, butwritten off
as totally impractical.

Today, Z-buffers are commanly implemented in
hardware.

Properties of parallel projection

Properties of parallel projection:

Mot realistic locking
Good for exact measurements
* Areactually akind of affine transformation
« Parallel lines remain parallel
Ratios are preserved
= Angles notiin general) pre served
& Most often used in CAD, architectural drawings,
etc, where takin g exact measurament is
important

Derivation of perspective projection

Consicer the projection of a point onto the
projection plane:

By similar triangles, we can compute how much thex
and y coordinates are scaled:
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[Mote: Angel takes d to be anegative number, and
thusavoids usingaminus sign ]
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Homogeneous coordinates revisited

Remember how we said that affine tran sformation s
work with the last coordinate always st to one.

What happens if the coordinate is not one?

We divide all the coordinates by w:
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If w =1, then naothin g chan ges.

Sometimes we call this division step the "perspective
divide”




Homogeneous coordinates and
perspective projection

Mow we can re-write the perspective projection asa
matrix equation:

Projective normalization

Afterapplyingthe perspective transformation and
dividing by w, we are free to do a simple parallel
projection to get the 2D image.
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Again, projection implies droppingthe z coordinate
to give a 20 image, but we usually keep itaround a PP
little while longer.
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Vanishing points

What happensto two parallel lines that are not
parallel to the projection plane?

Vanishing points (cont'd)

Dividing by we

Py +ivy 4
Think of train tracks recadinginto the horizon. Py v,
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Letting t go to infinity:
Theequation for alineis: tv.
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After perspective transformation we get:
) . Each set of parallel lines intersect at a vanishing
X Pt TV peint on the PP.
¥'= pyttvy, o
w' —{p, +tv,)id Q: How many vanishing points are there?
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Clipping and the viewing frustum Properties of perspective projections
The center of projection andthe portion of the The perspective projection isan example ofa
projection plane that map to the final image form an projective transformation.
infinite pyramid. The sides of the pyramid are
clipping planes. Here are some properties of projective
transformation s: s
Frequently, additional clipping planes are inserted to ) ) 5
restrict the range of depths. These dipping planes + Linesmaptolines
are called the nearand far or the hither and yon * Parallel lines do not necessarily remain parallel
clipping planes. * Ratiosare not preserved
One of the advantages of perspective projection is
that size varies inversely with distance — looks
realistic.
A disadvantage is that we can't judge distances as
exactly aswe can with parallel projections.
Near
(Hither) Far
Yon)
All of the clipping planes bound the the viewing
frustum.
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Human vision and perspective Summary

‘ The human visual system usesalensto collect light What to take away from this lecture:
- more efficiently, but records perspectively projected
. |\ images much like a pinhole camera. * Allthe boldfacedwords.

systems usad in computer graphics.

/ v ~ ~ * Anappreciation for the various coordinate

* How to compute the world-»eye coordinate
transformation with gluLookAt.
How a pinhole camera waorks.
How orthographic projection works.

4 }ﬁ—?mm, p=) Pﬂﬁil’ia}f How the perspective transformation works.
How we use homogeneous coordinates to
Q: Why did nature give useyes that perform represant perspective projections.

perspective projections?
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* The properties of vanishing points.
# The mathematical properties of projective
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Q: Do oureyes“see in 3077

) transformations.
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