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Reading

Requiredh
* fngel31.3.7-311
Further reading:

* fngel therest of Chapter 3
Foley, et al, Chapter 5.1-5.5.
DavidF. Rogers and J. Alan Adams,

Mathematical Bemen ts for Computer Graphics,
2 Ed, mcGraw-Hill, Mew York, 1990, Chapter 2,

Geometric transformations

Geometric transformations will map points in one
space to pointsin another: &'y, 277 = v 2.

These transformations can be very simple, such as
scaling each coordinate, or complex, such asnon-
linear twiists and bends,

We'll focus on transformations that can be
reprasanted aasily with matrix cperations

Vector representation

Wie cah representa point, p = iyl inthe plane or
p=ixyz)in 3D space

\/‘ as column wactors |:Xi|
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* as row vectors [X y]
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Representation, cont.

(ABYT= ETAT
Wecan represent a 2-D transfermation A by a
it
Ay (A& =T 2]
el s GI
(AeY'AB =T
\,1 # '1-- If pis acolumn vector, M goes on the left:
(K% T A p'= Mp
- %‘\ﬁ{i X' a blx - [&x .;bw
L"'}= L d}[,‘/} s l-A\i

If pis arow wectar, M‘Tgoes onthe right: J*(—.ﬂwp&{

p'=pM’
[« y]=[x y][z ;} = [MrbT cxdﬂ

Wewill use column vactors.
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Two-dimensional transformations

Here's all you get with a2 x 2 transformation matrix

e

Identity

Supposewe choose a=d=1, b=c=0

* (ivasthe identity matrix

{

r|F>‘~'_'|D:t
\‘r“"[OJ‘;

o
* Doesn't movathe peints at all
X'=ax+ by
¥'= o+ ay b(‘ 4
t -
Wewill dewelop some intimacy with the elements \( - \/
abod.
9 10

Scaling Refleckon

Supposewe set b=c=d, but let g and dtake on any
pos fffve wall e

* Givasasaling matrix

g 0
0 d
+ Provides differential {(non-uniform) scaling in

¥ andw: -

yi=dy
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Supposewe keep b=c=0, but let either a or d go
negative,

Examples:
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Mowlet's leave a=d=T and experimentwith &, ...

The rmatrix
1 k&
oo

givas:
X'=x+ by
¥'=y
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Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:
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Effect on unit square, cont.

Observe:

* Crigin inwariant under M

* A can bedetermined just by knowing how the
corners 1,00 and (0,1) are mapped

* gand d givex- andy-scaling
* bandcgivex-andy-shearing
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Rotation

From our abservations of the effect an the unit
square it should be easy to write down a matrix for
“retation about the origin®

L]

Thus
Cosy -—SNB
M=R(&)=
4B L
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Limitations of the 2 x2 matrix

P 2% 2 linear transformation rmatrix allows

Scaling
Rotation
Reflection
Shearing

* & & @

Q: What important operation deesthat leave out?

/rr ms] q‘lrf LY
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Homogeneous coordinates

We can loft the problem up into 3-space, adding a
third compon ent to every paint:

X
Mk
¥ 1| &

Addingthethird"w" component putsusin
homogenous coordinatas.

Then, transform with a3 % 3 matrix
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Affine transformations

The addition oftranslation to linear transformations
gives usaffine transformations.

In matrix form, 20 affine transfermations alway s look
like this:

20 &ffine tran sformation s ahways have a bottom row
of [001].

An “affine point” is a”linear point" with an added w-
coordinate which is ahways 1:
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Applyving an affine transformation gives another
affine point:

Apy, +1]
Mpyss = [ I-T

he

Rotation about arbitrary points

Until now, we hawe only considerad rotation about
the origin.

With homogeneou s coordin ates, you can specify a
retation, 4 about any point g =[q, 9y 11T with a
oAt r:
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1. Translate q to origin
2. Rotate
3. Translate back

Mote: Transformation order isimportant!!
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Points and vectors

j Wedtors have an additional coordinate of w=0. Thus,
v = v a change of origin has no effect on wectors.
o
C;T Q: What happens ifwe multiply a vector by an affine
ER o b tx v\ - ﬂk\.ﬂ:-lll'a;E
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Basic 3-D transformations: scaling

Some of the 3-D affine transformations are just like
the 2-0 ones,

Inthis case, the botkom rowis ahways [0 0 0 1],

For example, scaling:

x' 5, 0 0 0O«

yi|o s 0 0|y

|0 o = Dz

1 o o 0 1
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______________ .. I/

.
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Translation in 3D
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Rotation in 3D

Rotation now has more possibilities in 30
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A general rotation can be specified in terms of a

prodecut of these three matrices. How else mightyou » N
specify a rotation? s —
[erp - v E[Uli\
Tu,c\ fTABAS &
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Shearing in 3D
shearingis also more complicated. Here isone
example: h,r—*".':',*‘éf’;"-.s
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We call this a shear with respecttothe x=z plane.
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Properties of affine transformations

Here are some useful properties of affine
transformation s

Linesmaptelines
Parallel lines remain parallel

* Midpoints mapto midpoints (in fad, ratios are
ahways preserved]
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Affine transformations in OpenGL

OpenGL maintains a"'modalview” matrix that helds the
currenttransformation M.

Themodahiaw matrix is applied to peints (usually
vertices of palygons) before drawing,

Itis modified by commands including:

+ glLoadIdentity() M1
- zat Mto identity

*+ glTranslatef(t,, T, = M« MT
- translate by (t, t,. t;)
+ glRotatef(B8, x, ¥, Z) M~ MR

- rotate by angle a about axis (< v, 2)

+ glicalefis , S, 3] M~ MS
- scale by is, 5, %)

Mote that OpenGL adds transformations by
postmultiplication of the modeliew matrix.
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Summary

What totake away from this lecture:

* Allthe namesin boldface,

How points and transformations are
representec,

* Howto compute lengths, dot products, and
cross products of vectors, and what their
geametrical meanings are.

& What all the elements of a2 x 2 fransfermation
matrix do and how these generalize to 3x 3
transformations,

* What homogeneous coordinates are and how
they work for affine transformations.

How to con catenate transformations.

* The mathematical properties of affine

transformations,
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