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What is an image?

We can think of an image as a fun ction, £ from B2 to
R

+ [ ) givesthe intensity of a channel at

position (2 )

+ Reaalistically, we expeact the image only to be
defined cver arectangle, with afinite range:

+ [l BlE [ d] = [0.1]

A colorimage isjust threefundcions pastedtogether,
W e canwrite this as a"vedor-valued” function:

Hx, vl
Fla, vl=| glx, v]
blx, v)







Images as functions




What is a digital image?
In computer graphics, we usually operate on digital
(discreta) images:

+ Samplaethespace onareqular grid

+ Quantize each sample (round to nearest
intedger)

If our samples ara A apart, we can write this as:

(Ti j] = Quantize] (i A jA) §




Image processing

An image processing operation typically defines a
newimage ginterms of an existingimageaf,

The simplest operations arethose that transform
each pixelinisolation, These pixelto-pixel
operations can bewritten:

gl y)=tfix ¥l
Examples: thrashold, RGB — grayscale
Mote: atypical choice for mappingto grayscale isto

apply theYlQ television matrix and keap the Y,
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Moise

Irrage processing is also useful for noise redudtionand
edge enhanement. We will foous on these applications
forthe rermainder of the lecurs, .,

Looy) = T 043 1C8)

Impulse noise Craussiam nose

Common types of noise:

+ Salt and pepper nose: contains mndom
occurrenoes of backand white pioels

+  Impukse nose: contains mndom ocourrenage s of
wrhite pixels

+ Gaussmn noise: variations in intensity drwn froma
Gaussian normmal distribution
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ldeal noise reduction




ldeal noise reduction
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Practical noise reduction

Howr canwe "smooth™ away noise in asingle image?

§]

|sthere a more abstractway to represent this sort of
operation? Of course there is!
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Discrete convolution

Cne of the maost commaon methods for filtering an
imageis called discrata convolution. (e will ju st
call this "convolution” from here on.)

In 10, convalution is defined as:

glnl= fln] *=hn]
= > flnThln —n'

I.Il

=3 fln'1hln'- n]

I.Il

where .T;\[n]= A[—n].

[.""'Ij ﬂFu.L;I_nI = 'r"-rl




Discrete convolution

One can show that convalution has some conveniant
properties, Given fundtions a &, ¢

q#*h=h=*g
(a*b)=c=qa={b=C)

a*{b+c)=a=b+a=c

W el make use of these properties later. ..
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Convolution in 2D

In twio dimensions, cormialution bacomeas:

gln, m]=fln, m]*hln, m]
=> > flnimiln—n'm—-m'
won
=ZZIF[H',..".I’.I']E[H'— nm = ]
won

where A[n m]= h[-n, —m]
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Convolution representation

sincefand b are defined ovear finite region s, we Can

witite them out in two-dimen sional arrays: j:
123 Sl o Ta 100
145 O3 240 233 i)
g0 177 246 228 127
67 Qi 255 237 05
106 111 128 167 Al
221 154 o7 123 I
%o1]  wo1|  xo1] £ h
0.1 w02 =01
=01 =01 =01

M ote: This is not matrix muftipfication!

Q: What happens at the boundary of the image?
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Mean filters

How can wie reprasent our noise-reducing averaging
as a convolution filter (kn ow as 2 mean filter)?
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Effect of mean filters

Gaussian Salt and pepper
noise NoiSe

Sx4

1x7
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. . r
Gaussian hilters —'inf\l

Gaussian filters weigh pixels based on their distance
from the canter of the conwvalution filker, In
particular:

E—in‘? +mE i fizat)

C

i, m]=
This does adecant job of blurring noise while
preserving features of the image.
What parameter controlsthe width of the Gaussian® ff{

What happenstotheimage asthe Gaussian filter br _
kernel qetswider? mrei by

What isthe constant CF What should we st it to?

C = Z hlﬂ Jm]

MY
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Effect of Gaussian filters

Gaussian Salt and pepper
Mo se noise

5x5
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Median filters

A madian filtar operates ovar an xixm region by
selectingthe median intensity inthe region,

What adwantage does amedian filter have over a

mean filter? Ed'!jﬁ :F»F:'a{rfU

|5 amedian filter a kind of convolution? ;U
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Effect of median filters

Craussian Salt and pepper

nolse nose
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Comparison: Gaussian noise

Mean Craussian Median

Jx3

IR
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Comparison: salt and pepper noise

Craussian Mledian
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Bilateral filtering

Bilateral filtering is amethodto average togethar
nearky samplas only if they are similar invalue,

“range’
b §ln)
. 3 o+
. = o

A\
—T - L L L L -
| “domain”
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Bilateral filtering

We can also changethe filter to something "nicer”
likea Gaussians:

i

Recall that convolution looked like this:
glr]= > fln1bln—n

Bilateral filter is similar, but includes both range and
domain filtering:

=1/ g n— '] Az (FIn]-FnT)

and vou have tonormalize asyou go

C=> hg [n-nThy (FIn]-fn'D
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FPariz, et al. RIGGEAPH course notes 2007
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Edge detection

Cne of the most important uses of image procassing
s adgedataction:

Really easy for hurmans
+ Really difficult for computers

+ Fundamental in computer vision
Important in many graphics applications
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Gradients ’\J

Ao

X
The gradient isthe 20 equivalent of the derivative;

Vi (x,y) = {ﬁ 7 o - tan FE”/ °y

EY,

Froperties of the gradient

* |tsavedor

* Foints inthe direction of matimum increase of F
*+ Magnitudeisrate of increase —— T ; J{

Howr can we approximate the gradientin a discrete

imagea? .E.{ Ef’u M] ;g.bﬂ Im}.{—{n , m]

o ~| 1“& {?[.ﬁj”} = ﬁﬂ}*‘*ﬂ ‘{'Lﬁ;ﬂ'q




Less than ideal edges

Pixels plotted —= SSEay
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Steps in edge detection

Edge detection algorithms typically proceed in three
af four steps:

Fitering: cut down on noise

+ Enhancemeant: amplify the difference between
edges andnon-adges

+ Datection: use athreshold operation

+ Loalization (optionall; estimate geometry of
edges as 10 contoursthat can pass betbween
pixels

3l




Ed ge enhancement

A popular gradient filter is the Sobal oparator:

-1 0 1
s
. =lo =\ l]
fo=-2 0 2 M [
-1 0 1
e [
1 2 1 o= |-
g=|0 0 0 ! N
-1 -2 -1

e can then computethe magnitude ofthe vecor

5..5,).

Mote that these operators are conveniently “pre-
flipped” for convolution, soyou can directly slide
these across an image with out flipping first,
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Results of Sobel edge detection
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second derivative operators

& ?‘:‘ﬁ <) — ”E*_r.
() 7 D AOTE

& T —tA —

[ ] .I| th!'_ii'-_-hiflil_

—_ 1"’1 Ahl- -

The Sobel operator can produce thick edges. 1deally,
we're looking for infinitely thin boun daries,

An alternative approach isto loolk for local extremain
the first derivative: places wherathe change in the
gradientis highest,

Q: A peakin thefirst derivative corresponds to what
in the second derivative? I,

Q: Howe might we write this as a convolution filter?
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Localization with the Laplacian

An equivalent measure of the second derivative in 20
is the Laplacian: r:}:alr

Ff #F ;5
V' (n) =2+ ayf = (e Ryy )

Lsing the same argumentswe usedto computethe | oy
gradient filters, we can derive aLapladian filter to be: |

usedtolocalize edges,

3l




Localization with the Laplacian

Laplacan (+12 8)
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Sharpening with the Laplacian
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Why does the sign make a difference?

Howr can you write the filter that makesthe

sharpenadimage?
3T




Summary

What you should takke away from this lecture;

* &+ & * »

L

The meanings of all the boldfaced terms,

Howe noise reduction is done

Haonr discrete convaolution filteringworlks

The effect of mean, Gaussian, andmedian filters

What an image gradient is and how it can be
com putad

How edge detection is done

What the Laplacian image isandhow it isused
in either edge detection or image sharpening
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