Surfaces of Revolution

Brian Curless CSE 457 Spring 2013

Surfaces of revolution

Idea: rotate a 2D **profile curve** around an axis.

What kinds of shapes can you model this way?

Constructing surfaces of revolution

Constructing surfaces of revolution

Given: A set of points C[n] on a curve in the xy-plane:

$$\underline{C[n]} = \begin{bmatrix} C_x[n] \\ C_y[n] \\ 0 \\ J \end{bmatrix} \quad \text{where } n \in [0, N]$$

Let $R_p(\Theta_m)$ be a rotation about the y-axis by angle Θ_m .

Find: A set of points S[m,n] on the surface formed by rotating C[n] rotated about the y-axis. Assume $m \in [0,M]$.

Solution:
$$S[m,n] = R(\mathbb{A}_m) C[n]$$

S

Constructing surfaces of revolution

We now have an array of points, S[n, m] on the surface.

How would we turn this into a mesh of triangles?

How many triangles are generated?

~ 2 N·M