## Surfaces of Revolution

Brian Curless CSE 457 Spring 2013 Surfaces of revolution









Idea: rotate a 2D **profile curve** around an axis.

What kinds of shapes can you model this way?

2

## Constructing surfaces of revolution







1

## Constructing surfaces of revolution



**Given:** A set of points C[n] on a curve in the xy-plane:



S

$$C[n] = \begin{bmatrix} C_x[n] \\ C_y[n] \\ 0 \\ 1 \end{bmatrix} \quad \text{where } n \in [0, N]$$

Let  $R_p(\Theta_m)$  be a rotation about the y-axis by angle  $\Theta_m$ .

**Find:** A set of points S[m,n] on the surface formed by rotating Q[n] rotated about the y-axis. Assume  $m \in [0, M]$ .

Solution: 
$$\leq \lceil m, n \rceil = R \sqrt{\frac{1}{M}} / C \lceil n \rceil$$

## Constructing surfaces of revolution

We now have an array of points, S[n, m] on the surface.



How would we turn this into a mesh of triangles?

How many triangles are generated?

5

