Hierarchical Modeling

Brian Curless
CSE 457
Spring 2014

Reading

Required:
+ Angel, sections 8.1 - 8.6, 8.8

Optional:

* OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

* spheres

¢ cubes

* cylinders

These symbols are instanced using an instance
transformation.

Q: What is the matrix for the instance transformation
above?

3D Example: A robot arm

Consider this robot arm with 3 degrees of freedom:

+ Base rotates about its vertical axis by &
¢ Upper arm rotates in its xy-plane by ¢
¢ Lower arm rotates in its xy~plane by ¢

Lower arm

Upper ar

[Angel, 2011]

(Note that the angles are set to zero in the figure; i.e.,
the parts are shown in their “default” positions.)

Q: What matrix do we use to transform the base?
Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

3D Example: A robot arm

An alternative interpretation is that we are taking the
original coordinate frames...

Lower arm
\l

Upper arm

Base

From parts to model to viewer

Model or object space

< Mmodel

Yuw

World space

Myiew

Eye or camera space

Robot arm implementation
The robot arm can be displayed by keeping a global matrix
and computing it at each step:

Matri x M nodel ;
Matrix M.view,

mai n()
{
M vi ew = conpute_view_transforn();
robot _arm();
}
robot _arm()
{
M nodel = MviewR y(theta);
base();
M nodel = M View R y(theta)*T(0, hl, 0)*R _z(phi);
upper _arn() ;
M nodel = M.view'R y(theta)*T(0,h1,0)
*R_z(phi)*T(0, h2,0)*R_z(psi);
| ower _arm();
}

Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time, we can
just update it /n place by concatenating matrices on the right:

Matri x M nodel vi ew,

mai n()

{
M _nodel vi ew = conput e_vi ew_transforn();
robot _arm();

}

robot _arn()

{
M nodel *= R y(theta);
base();
M nodel *= T(O0, h1, 0)*R z(phi);
upper _arn();
M _nodel *= T(O0, h2,0)*R_z(psi);
I ower _arn();

}

Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

mai n()

{

gl Mat ri xMode(GL_MODELVI EW) ;
Matrix M= conpute_view xforn();
gl LoadMatrixf(M);

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

Righl-froml Righl—rearl

Ry
Left-front Left-rear
wheel

wheel wheel wheel

robot _arm();
}
+ edges contain geometric transformations
robot _arn()
(+ nodes contain geometry (and possibly drawing
gl Rotatef(theta, 0.0, 1.0, 0.0); attributes)
base();
gl Translatef(0.0, hi, 0.0); How might we
gl Rotatef(phi, 0.0, 0.0, 1.0); draw the tree for
| ower _arm(); the robot arm?
gl Translatef(0.0, h2, 0.0);
gl Rotatef(psi, 0.0, 0.0, 1.0);
upper _arm();
}
9 10
m figure()
{
torso();
gl PushMatri x();
gl Translate(...);
gl Rotate(...);
head();
gl PopMatrix();
gl PushMatrix();
M, _— S gl Translate(...);
M My /| M Mo gl Rotate(...);
_— 1 l.ﬁi(/ Mirea) Miul \\x
] 2 | ef t _upper_arn();
‘ e | Lef::gper ngl;t‘;;pper Leftl-elg)per nghlte-;pper gl PushMat ri x() ;
P N 7 7 rratel 3
Left-lower || | Right-lower|| | Left-lower || | Right-lower left_|lower_arm);
arm arm leg leg .
gl PopMatrix();
gl PopMatri x();
) . }
Q: What's the most sensible way to traverse this tree?
11 12

Animation

The above examples are called articulated models:
* rigid parts
¢ connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

Key-frame animation

The most common method for character animation in
production is key-frame animation.

+ Each joint specified at various key frames (not
necessarily the same as other joints)

+ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

+ Agood interactive system

* Alot of skill on the part of the animator

[o)

4 15
13 14
Scene graphs Summary
The idea of hierarchical modeling can be extended to Here's what you should take home from this lecture:
an entire scene, encompassing:
P 9 ¢ All the boldfaced terms.

+ many different objects * How primitives can be instanced and composed

* lights to create hierarchical models using geometric

* camera position transforms.

L ¢ How the notion of a model tree or DAG can be
This is called a scene tree or scene graph. .

extended to entire scenes.
¢ How OpenGL transformations can be used in
hierarchical modeling.
+ How keyframe animation works.
Object1
-
Materials1
Object2
Object3
15 16

