Hierarchical Modeling

Brian Curless
CSEA457
Spring 2014

Reading

Required:
¢+ Angel, sections 8.1 - 8.6, 8.8

Optional:

¢ OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIls support a few geometric
primitives:

[V\.gpkefo(\

* spheres 3
* cubes
+ cylinders

These symbols are instanced using an instance
transformation.

-—_ A

Q: What is the matrix for the instance transformation

above?
A/\%SKT

M= TRS

3D Example: A robotarm

Consider this robot arm with 3 degrees of freedom:

+ Base rotates about its vertical axis by & K! ()
+ Upper arm rotates in its xy-plane by ¢ R\{(3
+ Lower arm rotates in its xy-plane by RZ(\
Lowerarm -1
NEEINED
Upper arm -y «;i__ \

Base
\

- ‘-19
z 7\ 4

[Angel, 2011]

z

(Note that the angles are set to zero in the figure; i.e.,
the parts are shown in their “default” positions.)

Q: What matrix do we use to transform the base? X

Q: What matrix for the upper arm? 1 /\J,T (®) h,) O\

Q: What matrix for the lower arm% T@)\/\L)oj{)\zte\

R (BT (o0 ,Z%R L,Lé

bnyge
\/v_—_\/JVA 4
A

W\
QQL/ LY

Q\‘_____‘j:’_____________———””—- [p V0 T

—_——

3D Example: A robotarm

An alternative interpretation is that we are taking the
original coordinate frames...

™

From parts to model to viewer

Model or object space

§ model
yu: {
Y
World space
Ly
Z'H'
M

view

Y
Ye / Eye or camera space

Robot arm implementation

The robot arm can be displayed by keeping a global matrix
and computing it at each step:

Matrix M_model;

Matrix M_view;

main()

{

M view = compute view transform();

robot arm() ;

robot_arm()

{

M_model M_View*R;y(theta);
base() ;
M model = M View*R y(theta)*T(0,hl,0)*R z(phi) ;
upper_arm();
M model = M view*R y (theta)*T(0,hl,0)

*R z (phi)*T(0,h2,0)*R z(psi);
lower arm() ;

}

Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time, we can
just update it in place by concatenating matrices on the right:

Matrix M_modelview;

main ()

{

M modelview = compute view transform() ;

robot arm() ;

robot arm()
{ Y
M_modeﬂ *= R;y(theta);
base(); ,
]
M;modeI’*= T(O,hl,O)*R;z(phi);
upper aer);
— ¢
M_modeI/*= T(O,h2,0)*R;z(psi);

lower arm() ;

Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main()

{

glMatrixMode (GL MODELVIEW) ;
Matrix M = compute_yiew_;form();
glLoadMatrixf(M) ;

robot arm() ;

robot arm()

{
glRotatef (theta, 0.0, 1.0, 0.0);
base() ;
glTranslatef(0.0, hl, 0.0);
glRotatef(phi, 0.0, 0.0, 1.0);
lower arm();
glTranslatef(0.0, h2, 0.0);
glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm() ;

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

Mee R-R LF)
R-F\‘ ';' / L-R
Right-front | | Right-rear Left-front Left-rear Wheel
wheel wheel wheel wheel

+ edges contain geometric transformations

+ nodes contain geometry (and possibly drawin
attributes) Pidde @
7 Mpmx
/-K"
How might we
draw the tree for) buse \
the robot arm? \ MU
Vg
AN

N L A

A complex example: human figure

Right-upper
leg

Left-lower || | Right-lower
leg leg

Q: What's the most sensible way to traverse this tree?

&{Qﬂ\ el S{_

4

Human figure implementation, OpenGL

figure ()
{
torso() ;
glPushMatrix() ;
glTranslate(...);
glRotate(...)
head() ;
glPopMatrix() ;
glPushMatrix() ;
glTranslate(...)
glRotate(...)
left upper arm() ;
glPushMatrix() ;
glTranslate(...);
glRotate(...);
left lower arm();
glPopMatrix() ;
glPopMatrix () ;

12

Animation

The above examples are called articulated models:
* rigid parts
¢ connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

13

Key-frame animation

The most common method for character animation in
production is key-frame animation.

+ Each joint specified at various key frames (not
necessarily the same as other joints)

¢ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

¢ A good interactive system
+ Alot of skill on the part of the animator

g 1+ 6@

14

Scene graphs

The idea of hierarchical modeling can be extended to

an entire scene, encompassing:

+ many different objects

¢ lights

¢ camera position

This is called a scene tree or scene graph.

Camera

Scene

Light1

Light2

Xform?2

Xformf

Object1

/ Geometry

/

Object2

Materials1

Xform3

\

Object3

15

Summary

Here’s what you should take home from this lecture:

*

*

All the boldfaced terms.

How primitives can be instanced and composed
to create hierarchical models using geometric
transforms.

How the notion of a model tree or DAG can be
extended to entire scenes.

How OpenGL transformations can be used in
hierarchical modeling.

How keyframe animation works.

16

