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Reading

Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 

1995. Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4.  

[online handout]
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What is an image?

We can think of an image as a function, f, from R2 to 

R:

� f (x, y) gives the intensity of a channel at 

position (x, y) 

� Realistically, we expect the image only to be 

defined over a rectangle, with a finite range:

• f : [a, b] x [c, d] � [0,1]

A color image is just three functions pasted together.  

We can write this as a “vector-valued” function: 

 
 =
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Images as functions
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What is a digital image?

In computer graphics, we usually operate on digital 

(discrete) images:

� Sample the space on a regular grid

� Quantize each sample (round to nearest integer)

If our samples are ∆ apart, we can write this as:

f[i ,j] = Quantize{ f(i ∆, j ∆) }

i

j

f[i,j]
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Image processing

An image processing operation typically defines a 

new image g in terms of an existing image f.

The simplest operations are those that transform each 

pixel in isolation.  These pixel-to-pixel operations can 

be written:

Examples: threshold, RGB � grayscale

Note: a typical choice for mapping to grayscale is to 

apply the YIQ television matrix and keep the Y.

( , ) ( ( , ))g x y t f x y=

0.596 0.275 0.321

0.212 0.523 0.3

0.299 0.587 0.114
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Noise

Image processing is also useful for noise reduction and edge 

enhancement.  We will focus on these applications for the 

remainder of the lecture…

Common types of noise:

� Salt and pepper noise: contains random occurrences of 

black and white pixels

� Impulse noise: contains random occurrences of white 

pixels

� Gaussian noise: variations in intensity drawn from a 

Gaussian normal distribution
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Ideal noise reduction
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Ideal noise reduction
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Practical noise reduction

How can we “smooth” away noise in a single image?

Is there a more abstract way to represent this sort of 

operation? Of course there is!
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Discrete convolution

One of the most common methods for filtering an 

image is called discrete convolution.  (We will just 

call this “convolution” from here on.)

In 1D, convolution is defined as:

ɶ
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Some properties of discrete convolution

One can show that convolution has some convenient 

properties.  Given functions a, b, c:

We’ll make use of these properties later…

( ) ( )

( )

a b b a

a b c a b c

a b c a b a c
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Convolution in 2D

In two dimensions, convolution becomes:
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Convolution representation

Since f and h are defined over finite regions, we can 
write them out in two-dimensional arrays:

Note: This is not matrix multiplication!

Q: What happens at the boundary of the image?

128 54 9 78 100

145 98 240 233 86

89 177 246 228 127

67 90 255 237 95

106 111 128 167 20

221 154 97 123 0

X 0.1

X 0.1

X 0.1

X 0.1

X 0.2

X 0.1

X 0.1

X 0.1

X 0.1
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Mean filters

How can we represent our noise-reducing averaging 

as a convolution filter (know as a mean filter)?
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Effect of mean filters
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Gaussian filters

Gaussian filters weigh pixels based on their distance 

from the center of the convolution filter.  In particular:

This does a decent job of blurring noise while 

preserving features of the image.

What parameter controls the width of the Gaussian?  

What happens to the image as the Gaussian filter 

kernel gets wider?

What is the constant C?  What should we set it to?
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Effect of Gaussian filters
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Median filters

A median filter operates over an mxm region by 

selecting the median intensity in the region.

What advantage does a median filter have over a 

mean filter?

Is a median filter a kind of convolution?
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Effect of median filters
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Comparison: Gaussian noise
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Comparison: salt and pepper noise
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Bilateral filtering

Bilateral filtering is a method to average together 

nearby samples only if they are similar in value.

“domain”

“range”
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Bilateral filtering

We can also change the filter to something “nicer” like 

Gaussians:

Recall that convolution looked like this:

Bilateral filter is similar, but includes both range and 

domain filtering:

and you have to normalize as you go:
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Input

σ
s 
=

 2
σ

s 
=

 6
σr = 0.1 σr = 0.25

Paris, et al. SIGGRAPH course notes 2007
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Edge detection

One of the most important uses of image processing is 

edge detection:

� Really easy for humans

� Really difficult for computers

� Fundamental in computer vision

� Important in many graphics applications
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What is an edge?

Q: How might you detect an edge in 1D?
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Gradients

The gradient is the 2D equivalent of the derivative:

Properties of the gradient

� It’s a vector

� Points in the direction of maximum increase of f

� Magnitude is rate of increase

How can we approximate the gradient in a discrete 

image?

( , ) ,
f f

f x y
x y

 ∂ ∂
∇ =   ∂ ∂ 
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Less than ideal edges
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Steps in edge detection

Edge detection algorithms typically proceed in three 

or four steps:

� Filtering: cut down on noise

� Enhancement: amplify the difference between 

edges and non-edges

� Detection: use a threshold operation

� Localization (optional): estimate geometry of 

edges as 1D contours that can pass between 

pixels
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Edge enhancement

A popular gradient filter is the Sobel operator:

We can then compute the magnitude of the vector

Note that these operators are conveniently “pre-

flipped” for convolution, so you can directly slide these 

across an image without flipping first.
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Results of Sobel edge detection
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Second derivative operators

The Sobel operator can produce thick edges.  Ideally, 
we’re looking for infinitely thin boundaries.

An alternative approach is to look for local extrema in 
the first derivative: places where the change in the 
gradient is highest.

Q: A peak in the first derivative corresponds to what   
in the second derivative?

Q: How might we write this as a convolution filter?
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Localization with the Laplacian

An equivalent measure of the second derivative in 2D 

is the Laplacian:

Using the same arguments we used to compute the 

gradient filters, we can derive a Laplacian filter to be:

(The symbol D is often used to refer to the discrete
Laplacian filter.)

Zero crossings in a Laplacian filtered image can be 

used to localize edges.
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Localization with the Laplacian

Original Smoothed

Laplacian (+128)
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Sharpening with the Laplacian

Original Laplacian  (+128)

Original + Laplacian Original - Laplacian

Why does the sign make a difference?

How can you write the filter that makes the sharpened 

image?
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Summary

What you should take away from this lecture:

� The meanings of all the boldfaced terms.

� How noise reduction is done

� How discrete convolution filtering works

� The effect of mean, Gaussian, and median filters

� What an image gradient is and how it can be 

computed

� How edge detection is done

� What the Laplacian image is and how it is used in 

either edge detection or image sharpening


