Hierarchical Modeling

CSE 457
Winter 2014

Reading

Required:
+ Angel, sections8.1-86,88

Optional:

+ OpenGL Programming Guide, chapter 3

Symbols and instances

Maostgraphics APls supporta few geometric
primitives:

+ spheres

+ cubes

+ cylinders

These symbols are instanced using an instance
transformation.

Q,AOA&,L&

Q: What is the matrix for the instance transformation
above?

3D Example: A robot arm

Consider this robot arm with 3 degrees of freedom:

+ Base rotates aboutits vertical axis by 6

+ Upper arm rotates in its xy-plane by ¢

+ Lower arm rotates in its xy-plane by y
Lower arm

Upper arm ¥ il

[Angel, 2011]
(Note that the angles are setto zeroin the figure;ie.,
the parts are shown in their “default” positions.)
Q: What matrix do we use to transform the base?

Q: What matrix for the upperarm?

Q: What matrix for the lowerarm?

3D Example: A robot arm

An alternative interpretation is that we are taking the
original coordinate frames...

Lower arm
Upper arm y W ¥
PP % g 1

'ap hy
Base II’I J—— ‘ ! | - hjl. .. -
// o ﬁﬁ Zﬁ

...and translating and rotating them into place:

From parts to model to viewer

-

| | Model or object space

M model

Yuw

‘World space

Myiew

Eye or camera space

Robot arm implementation
The robot arm can be displayed by keeping a global matrix
and computing it at each step:

Matrix M model;

Matrix M view;

main ()

{

M view = compute_view_ transform() ;
robot_arm() ;

robot_am()
{
M model = M view*R_y(theta);
base() :
M model = M View*R_y (theta) *T(0,hl,0) *R_z (phi) ;
upper_arm() ;
M model = M view*R_y (theta)*T(0,h1,0)
*R_z (phi)*T(0,h2,0) *R_z (psi) ;

lower_arm() ;

Do the matrix computations seem wasteful?

7

Robot arm implementation, better

Instead of recalculatingthe global matrix each time, we
can just update it in place by concatenating matriceson
the right:

Matrix M modelview;

main ()
{

M _modelview = compute view_ transform() ;
robot_arm() ;

robot_amm()
{
M _model *= R_y(theta):
base() ;
M model *= T(0,hl,0)*R_z(phi);
upper_arm() ;
M model *= T(0,h2,0)*R _z(psi):

lower_arm() ;

Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main ()

{

glMatrixMode (GL_MODELVIEW):
Matrix M = compute view xform();
glloadMatrixf(M)

robot_arm() ;

robot_arm()

{
glRotatef(theta, 0.0, 1.0, 0.0):
base() ;
glTranslatef(0.0, hl, 0.0)
glRotatef(phi, 0.0, 0.0, 1.0)
lower_arm() ;
glTranslatef(0.0, h2, 0.0);:
glRotatef(psi, 0.0, 0.0, 1.0);:
upper_arm() ;

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

Chassis I Chassis

” P . -
Right-front | = Right-rear | = Lefi-front Lefi-rear
wheel wheel wheel

Wheel I
wheel

+ edges contain geometric transformations
+ nodes contain geometry (and possibly drawing
attributes)

How might we
draw the tree for
the robotarm?

A complex example: human figure

My, . "
Miua M Miu -
e - I3 EY ; ~
Head Left-upper | |Right-upper| Left-upper | |Right-upper
arm arm leg | leg
My, M My My
' 1 e L o '
Lefi-lower | | Right-lower| | Lefi-lower | |Right-lower
£Ier) arm | leg leg

Q: What's the most sensible way to traverse this
tree?

Human figure implementation, OpenGL

figure()
{
torso() ;
glPushMatrix() ;
glTranslate(...);
glRotate(...);
head() ;
glPopMatrix () ;
glPushMatrix();
glTranslate(...);
glRotate(...);
left_upper arm{):
glPushMatrix () ;
glTranslate{ ...);
glRotate(...):
left_lower_ arm();
glPopMatrix() :
glPopMatrix() ;

Animation

The above examples are called articulated models:
+ rigid parts
+ connected by joints

They can be animated by specifying the jointangles
(or other display parameters) as functions of time.

Key-frame animation

The mostcommon method for character animation
in production is key-frame animation.

+ Each joint specified at various key frames (not
necessarily the same as other joints)
+ System does interpolation or in-betweening

Doing this well requires:

+ Away of smoothly interpolating key frames:
splines

+ Agood interactive system
+ Alotof skill on the part of the animator

S

Scene graphs

The idea of hierarchical modeling can be extended to
an entire scene, encompassing:

+ many differentobjects
+ lights
+ camera position

This is called a scene tree or scene graph.

|

L]

15

Summary

Here's what you should take home from this lecture:

+ All the boldfaced terms.

+ How primitives can be instanced and composed
to create hierarchical models using geometric
transforms.

+ How the notion of a model tree or DAG can be
extended to entire scenes.

+ How OpenGL transformations can be used in
hierarchical modeling.

+ How keyframe animation works.

