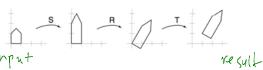
Hierarchical Modeling

CSE 457 Winter 2014

1

Symbols and instances

Most graphics APIs support a few geometric primitives:


• spheres

du Sylm (

cubes cylinders

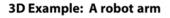
These symbols are instanced using an instance transformation.

ev,

Q: What is the matrix for the instance transformation above?

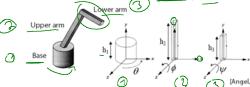
M= TRS

Reading


Required:

• Angel, sections 8.1 - 8.6, 8.8

Optional:


• OpenGL Programming Guide, chapter 3

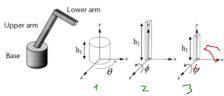
2

Consider this robot arm with 3 degrees of freedom:

- Base rotates about its vertical axis by θ
- Upper arm rotates in its xy-plane by φ
- Lower arm rotates in its xy-plane by ψ

(Note that the angles are set to zero in the figure; i.e., the parts are shown in their "default" positions.)

- **Q** What matrix do we use to transform the base?
 - Q: What matrix for the upper arm?

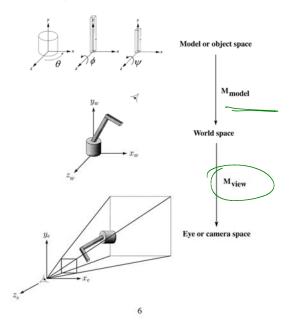

Q: What matrix for the lower arm?

3

3D Example: A robot arm

An alternative interpretation is that we are taking the original coordinate frames...

...and translating and rotating them into place:



5

Robot arm implementation

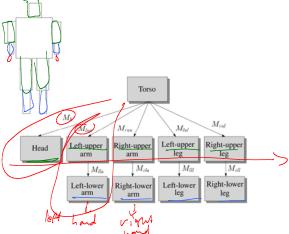
The robot arm can be displayed by keeping a global matrix and computing it at each step:

From parts to model to viewer

Robot arm implementation, better

Instead of recalculating the global matrix each time, we can just update it *in place* by concatenating matrices on the right:

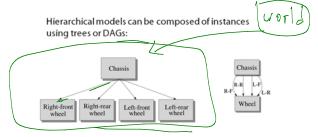
Do the matrix computations seem wasteful?


Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the **model-view matrix**, which is updated by concatenating matrices on the *right*.

```
main()
{
    . . .
    glMatrixMode( GL_MODELVIEW );
    Matrix M = compute_view_xform();
    glLoadMatrixf( M );
    robot_arm();
    . . .
}

robot_arm()
{
    glRotatef((theta, 0.0, 1.0, 0.0 );
    glTranslatef( 0.0, h1, 0.0 );
    glRotatef( phi, 0.0, 0.0, 1.0 );
    lower_arm();
    glTranslatef( 0.0, h2, 0.0 );
    glRotatef( psi, 0.0, 0.0, 1.0 );
    upper_arm();
}
```


A complex example: human figure

Q: What's the most sensible way to traverse this tree?

loople first

Hierarchical modeling

• edges contain geometric transformations

nodes contain geometry (and possibly drawing attributes)

How might we draw the tree for the robot arm?

War 1.

Human figure implementation, OpenGL

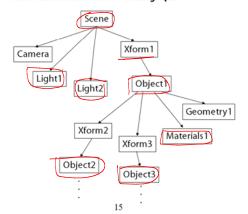
```
figure()
   torso();
   glPushMatrix();
       glTranslate( ... );
       glRotate( ... );
       head();
   glPopMatrix();
   glPushMatrix();
       glTranslate( ... );
       glRotate( ... );
       left_upper_arm();
       glPushMatrix();
           glTranslate( ... );
           glRotate( ... );
           left_lower_arm();
       glPopMatrix();
     glPopMatrix();
```

Animation

The above examples are called **articulated models**:

- rigid parts
- · connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.

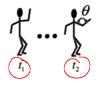

13

Scene graphs

The idea of hierarchical modeling can be extended to an entire scene, encompassing:

- · many different objects
- lights
- camera position

This is called a scene tree or scene graph.


Key-frame animation

The most common method for character animation in production is **key-frame animation**.

- Each joint specified at various key frames (not necessarily the same as other joints)
- System does interpolation or in-betweening

Doing this well requires:

- A way of smoothly interpolating key frames: splines
- A good interactive system
- A lot of skill on the part of the animator

14

Summary

Here's what you should take home from this lecture:

- All the boldfaced terms.
- How primitives can be instanced and composed to create hierarchical models using geometric transforms.
- How the notion of a model tree or DAG can be extended to entire scenes.
- How OpenGL transformations can be used in hierarchical modeling.
- How keyframe animation works.

16

	_