Hierarchical Modeling

CSE 457
Winter 2014

Reading

Required:

+ Angel, sections8.1-86,88

Optional:

+ OpenGL Programming Guide, chapter 3

Symbols and instances

Maostgraphics APls supporta few geometric
primitives:

+ spheres i “u QV’L/L/\/ ()
+ cubes
+ cylinders

These symbols are instanced using an instance
transformation.

oy OAOA&A&

Pt e Gyl b

Q: What is the matrix for the instance transformation
above?

M= TRS

A

—
—

3D Example: A robot arm

Consider this robot arm with 3 degrees of freedom:

+ Base rotates aboutits vertical axis by 6 F—
+ Upperarm rotatesin its xy-plane by ¢
+ Lower arm rotates in its xy-plane by

@ Upper arm
B icoad

2) Base

F ' l’ ’ l,
0) @) [Angel.2011]
(Note that the angles are setto zeroin the figure;ie.,
the parts are shown in their “default” positions.)

@ What matrix do we use to transform the base?

Q: What matrix for the upperarm?

Q: Whatmatrix for the lower arm? LZ
@L/(e'}) 7(0)4,}9) Qz(kﬁ)T(o)Li)O)g%(\g)
| L= i

| DWEN al W

3D Example: A robot arm

An alternative interpretation is that we are taking the
original coordinate frames...

Lower arm
Upper arm y W ¥
ee . [i

'dap by
Base II’I | N— ‘ ! | - hjl. |
e = ﬁﬁ ,73?:
z 3

4

AW

...and translating and rotating them into place:

From parts to model to viewer

-

| | Model or object space
Lh

M model

Yuw

TeY——

‘World space

Eye or camera space

Robot arm implementation

The robot arm can be displayed by keeping a global matrix
and computing it at each step:

Matrix M model; “<~—

Matrix M view; (——

main ()

{

M view = compute_view_ transform() ;
robot_arm() ;

robot_am()
{

M model = M view¥R_y(theta):
base() :

M model = M Viey*R_y (theti)*T(0,h1,0)*R_z (phi);
- - N~ =

upper_arm():
M model = M viewfR_y(theta))T(0,h1,0)

*R_z(phi)*T(0,h2,0)*R_z (psi) :
lower_arm() ;

Do the matrix computations seem wasteful?

7

Robot arm implementation, better

Instead of recalculatingthe global matrix each time, we
can just update it in place by concatenating matriceson
the right:

Matrix M modelview;

main ()
{

M _modelview = compute view_ transform() ;
robot_arm() ;

robot_amm()
{
u_nod-l@ R_y (theta) ;

base() ;

M model(*=/T(0,hl,0)*R_z(phi) ;
upper_a.):

M_mode T(0,h2,0)*R_z(psi);

lower_arm() ;

Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main ()

{

glMatrixMode (GL_MODELVIEW):
Matrix M = compute view xform();
glloadMatrixf(M)

robot_arm() ;

robot_arm()

{
glRobatef:@ 0.0, 1.0, 0.0);
“Base():
glTranslatef(0.0, hl, 0.0):
glRotatef(phi, 0.0, 0.0, 1.0)
lower_arm()
glTranslatef(0.0, h2, 0.0);:
glRotatef(psi, 0.0, 0.0, 1.0);:
upper_arm() ;

£=

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

=

/ (RE L
> F " . REY ¢ 3 (LR
Ilisht-l'mml Rishl-marl Left-front Lefi-rear I Wheel
wheel wheel wheel wheel

+ edges contain geometric transformations
+ nodes contain geometry (and possibly drawing

attributes)
[

How might we)
draw the tree for 5 MEB

the robotarm? ’
robotarm: |
P
M na

[Mm‘-’%)ML

A

A complex example: human figure

Torso
M My M
r EY -
ight-u Left-upper | Right-upper
arm I ez | 5
My, ‘: My My
T L | . L] r
Left-lower ||| Right-lower] | Left-lower | |Right-lower
ot | arm leg | leg
A g
€ M«l v Y\/\A
\,\M

Q: What's the most sensible way to traverse this

tree? QDQ% (ﬁ_; ((/k/

Human figure implementation, OpenGL

figure()
{
torso() ;
glPushMatrix() ;
glTranslate(...);
glRotate(... }:
head() ;
glPopMatrix () ;
glPushMatrix();
glTranslate(...);
glRotate(...);
left_upper arm{):
glPushMatrix();
glTranslate{ ...);
glRotate(...):
left_lower_ arm();
glPopMatrix() :
glPopMatrix() ;

Animation

The above examples are called articulated models:
+ rigid parts
+ connected by joints

They can be animated by specifying the jointangles
(or other display parameters) as functions of time.

Key-frame animation

The mostcommon method for character animation
in production is key-frame animation.

+ Each joint specified at various key frames (not
necessarily the same as other joints)
+ System does interpolation or in-betweening

Doing this well requires:

. zﬁiﬁ of smoothly interpolating key frames:

+ Agood interactive system
+ Alotof skill on the part of the animator

Scene graphs

The idea of hierarchical modeling can be extended to
an entire scene, encompassing:

+ many differentobjects

+ lights

+ camera position

This is called a scene tree or scene graph.

M Is1
1

15

Summary

Here's what you should take home from this lecture:

+ All the boldfaced terms.

+ How primitives can be instanced and composed
to create hierarchical models using geometric
transforms.

+ How the notion of a model tree or DAG can be
extended to entire scenes.

+ How OpenGL transformations can be used in
hierarchical modeling.

+ How keyframe animation works.

