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Reading

Required:

 Angel 3.1, 3.7-3.11 

Further reading:

 Angel, the rest of Chapter 3
 Foley, et al, Chapter 5.1-5.5.
 David F. Rogers and J. Alan Adams, Mathematical 

Elements for Computer Graphics, 2nd Ed., McGraw-
Hill, New York, 1990, Chapter 2. 
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Geometric transformations

Geometric transformations will map points in one 
space to points in another: (x', y‘, z‘ ) = f (x, y, z).

These transformations can be very simple, such as 
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be 
represented easily with matrix operations.
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Vector representation

We can represent a point, p = (x,y), in the plane or p=(x,y,z) in 
3D space

 as column vectors 

 as row vectors
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Canonical axes
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Vector length and dot products
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Vector cross products
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Representation, cont.

We can represent a 2-D transformation M by a matrix

If p is a column vector, M goes on the left:

If p is a row vector, MT goes on the right:

We will use column vectors.
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Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:

So:

We will develop some intimacy with the elements a, b, 
c, d…

'
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x a b x

y c d y
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Identity

Suppose we choose a=d=1, b=c=0:

 Gives the identity matrix:

 Doesn't move the points at all

1 0

0 1

 
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 
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Scaling

Suppose we set b=c=0, but let a and d take on any 
positive value:

 Gives a scaling matrix:

 Provides differential (non-uniform) scaling in x
and y:

0

0

a

d

 
 
 

'

'

x ax

y dy




2 0

0 2

 
 
 

 
 
 

1 2 0

0 2

1

2

1 2

1

2

1 2

1

2

1 2

x

y

x

y

x

y



14

______________

Suppose we keep b=c=0, but let either a or d go 
negative.

Examples:

1 0

0 1

 
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 

1 0

0 1
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x
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____________

Now let's leave a=d=1 and experiment with b. . . .

The matrix

gives:

1

0 1

b 
 
 
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x x by
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Effect on unit square

Let's see how a general 2 x 2 transformation M affects 
the unit square: 

   

0 1 1 0 0

0 0 1 1 0

a b

c d

a b a a b b

c d c c d d
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Effect on unit square, cont.

Observe:

 Origin invariant under M
 M can be determined just by knowing how the 

corners (1,0) and (0,1) are mapped
 a and d give x- and y-scaling
 b and c give x- and y-shearing
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Rotation

From our observations of the effect on the unit square, 
it should be easy to write down a matrix for “rotation 
about the origin”:

Thus,
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

 Scaling
 Rotation
 Reflection
 Shearing

Q: What important operation does that leave out?
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Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a 
third component to every point:

Adding the third “w” component puts us in 
homogenous coordinates.

And then transform with a 3 x 3 matrix:

. . . gives translation!
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Anatomy of an affine matrix

The addition of translation to linear 
transformations gives us affine transformations.

In matrix form, 2D affine transformations always 
look like this:

2D affine transformations always have a bottom 
row of [0 0 1].

An “affine point” is a “linear point” with an added 
w-coordinate which is always 1:

Applying an affine transformation gives another 
affine point:
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Rotation about arbitrary points

1. Translate q to origin

2. Rotate

3. Translate back

Note: Transformation order is important!!

Until now, we have only considered rotation about the 
origin.

With homogeneous coordinates, you can specify a rotation, 
q, about any point q = [qx qy]T with a matrix:
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y
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Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D 
ones.  

For example, scaling:

' 0 0 0

' 0 0 0

' 0 0 0

1 0 0 0 1 1
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z
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Translation in 3D

' 1 0 0

' 0 1 0

' 0 0 1

1 0 0 0 1 1
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These are the rotations about the canonical axes:

A general rotation can be specified in terms of a 
product of these three matrices.  How else might 
you specify a rotation?

Rotation in 3D (cont’d)

 


 

 
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 
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 
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R
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Use right hand rule
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Shearing in 3D

Shearing is also more complicated.  Here is one 
example:

We call this a shear with respect to the x-z plane.
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Properties of affine transformations

Here are some useful properties of affine 
transformations: 

 Lines map to lines
 Parallel lines remain parallel
 Midpoints map to midpoints (in fact, ratios are 

always preserved)
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Affine transformations in OpenGL

OpenGL maintains a “modelview” matrix that holds 
the current transformation M.

The modelview matrix is applied to points (usually 
vertices of polygons) before drawing.

It is modified by commands including:

 glLoadIdentity() M  I
– set M to identity

 glTranslatef(tx, ty, tz) M  MT
– translate by (tx, ty, tz)

 glRotatef(θ, x, y, z) M  MR
– rotate by angle θ about axis (x, y, z)

 glScalef(sx, sy, sz) M  MS
– scale by (sx, sy, sz)

Note that OpenGL adds transformations by  
postmultiplication of the modelview matrix.
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Summary

What to take away from this lecture:

 All the names in boldface.
 How points and transformations are represented.
 How to compute lengths, dot products, and cross 

products of vectors, and what their geometrical 
meanings are.

 What all the elements of a 2 x 2 transformation 
matrix do and how these generalize to 3 x 3 
transformations.

 What homogeneous coordinates are and how 
they work for affine transformations.

 How to concatenate transformations.
 The mathematical properties of affine 

transformations. 


