
Affine Transformations

CSE 457 
Winter 2015



2

Reading

Required:

 Angel 3.1, 3.7-3.11 

Further reading:

 Angel, the rest of Chapter 3
 Foley, et al, Chapter 5.1-5.5.
 David F. Rogers and J. Alan Adams, Mathematical 

Elements for Computer Graphics, 2nd Ed., McGraw-
Hill, New York, 1990, Chapter 2. 



3

Geometric transformations

Geometric transformations will map points in one 
space to points in another: (x', y‘, z‘ ) = f (x, y, z).

These transformations can be very simple, such as 
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be 
represented easily with matrix operations.



4

Vector representation

We can represent a point, p = (x,y), in the plane or p=(x,y,z) in 
3D space

 as column vectors 

 as row vectors
 x y

x

y

 
 
 

x

y

z

 
 
 
  

 x y z



5

Canonical axes



6

Vector length and dot products



7



8

Vector cross products



9



10

Representation, cont.

We can represent a 2-D transformation M by a matrix

If p is a column vector, M goes on the left:

If p is a row vector, MT goes on the right:

We will use column vectors.

a b

c d

 
 
 



     
     

     

'

'

M

x a b x

y c d y

p' p

   ' '

TM

a c
x y x y

b d



 
  

 

p' p



11

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:

So:

We will develop some intimacy with the elements a, b, 
c, d…

'

'

x a b x

y c d y

     
     

     

'

'

x ax by

y cx dy

 
 



12

Identity

Suppose we choose a=d=1, b=c=0:

 Gives the identity matrix:

 Doesn't move the points at all

1 0

0 1

 
 
 



13

Scaling

Suppose we set b=c=0, but let a and d take on any 
positive value:

 Gives a scaling matrix:

 Provides differential (non-uniform) scaling in x
and y:

0

0

a

d

 
 
 

'

'

x ax

y dy




2 0

0 2

 
 
 

 
 
 

1 2 0

0 2

1

2

1 2

1

2

1 2

1

2

1 2

x

y

x

y

x

y



14

______________

Suppose we keep b=c=0, but let either a or d go 
negative.

Examples:

1 0

0 1

 
 
 

1 0

0 1

 
  

x

y

x

y



15

____________

Now let's leave a=d=1 and experiment with b. . . .

The matrix

gives:

1

0 1

b 
 
 

'

'

x x by

y y

 


 
 
 

1 1

0 11

1

1

1
x

y

x

y



16

Effect on unit square

Let's see how a general 2 x 2 transformation M affects 
the unit square: 

   

0 1 1 0 0

0 0 1 1 0

a b

c d

a b a a b b

c d c c d d

 
 

 

     
          

p q r s p' q' r' s'

1

1

p q

rs

x

y

x

y



17

Effect on unit square, cont.

Observe:

 Origin invariant under M
 M can be determined just by knowing how the 

corners (1,0) and (0,1) are mapped
 a and d give x- and y-scaling
 b and c give x- and y-shearing



18

Rotation

From our observations of the effect on the unit square, 
it should be easy to write down a matrix for “rotation 
about the origin”:

Thus,

1

0

 
 

 

0

1

 
 

 

1

1

x

y

x

y



 
 
  
 
 
 

( )M R



19

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

 Scaling
 Rotation
 Reflection
 Shearing

Q: What important operation does that leave out?



20

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a 
third component to every point:

Adding the third “w” component puts us in 
homogenous coordinates.

And then transform with a 3 x 3 matrix:

. . . gives translation!

1

x
x

y
y

 
          

      
              
            

' 1 0

' ( ) 0 1

' 1 10 0 1

x

y

x x xt

y y yT t

w

t

 
 
 
  

1 0 1

0 1 1 2

0 0 1

This image cannot currently be displayed.



21

Anatomy of an affine matrix

The addition of translation to linear 
transformations gives us affine transformations.

In matrix form, 2D affine transformations always 
look like this:

2D affine transformations always have a bottom 
row of [0 0 1].

An “affine point” is a “linear point” with an added 
w-coordinate which is always 1:

Applying an affine transformation gives another 
affine point:

 
           

lin
aff 1

1

x

y
p

p

lin
aff 1

A
M

 
  
 

p t
p

 
      
   
0 0 1

0 0 1

x

y

a b t

M c d t
A t



22

Rotation about arbitrary points

1. Translate q to origin

2. Rotate

3. Translate back

Note: Transformation order is important!!

Until now, we have only considered rotation about the 
origin.

With homogeneous coordinates, you can specify a rotation, 
q, about any point q = [qx qy]T with a matrix:

x

y

x

y

x

y

x

y


q

θ



23



24



25

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D 
ones.  

For example, scaling:

' 0 0 0

' 0 0 0

' 0 0 0

1 0 0 0 1 1

x

y

z

x s x

y s y

z s z

     
     
     
     
     
     

x x

y

z

y

z



26

Translation in 3D

' 1 0 0

' 0 1 0

' 0 0 1

1 0 0 0 1 1

x

y

z

x t x

y t y

z t z

     
     
     
     
     
     

x x

y

z

y

z



27

These are the rotations about the canonical axes:

A general rotation can be specified in terms of a 
product of these three matrices.  How else might 
you specify a rotation?

Rotation in 3D (cont’d)

 


 

 


 

 
 



 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

1 0 0 0

0 cos sin 0
( )

0 sin cos 0

0 0 0 1

cos 0 sin 0

0 1 0 0
( )

sin 0 cos 0

0 0 0 1

cos sin 0 0

sin cos 0 0
( )

0 0 1 0

0 0 0 1

x

y

z

R

R

R

xR

yR

zR

Use right hand rule



28

Shearing in 3D

Shearing is also more complicated.  Here is one 
example:

We call this a shear with respect to the x-z plane.

' 1 0 0

' 0 1 0 0

' 0 0 1 0

1 0 0 0 1 1

x b x

y y

z z

     
     
     
     
     
     

x x

y

z

y

z



29

Properties of affine transformations

Here are some useful properties of affine 
transformations: 

 Lines map to lines
 Parallel lines remain parallel
 Midpoints map to midpoints (in fact, ratios are 

always preserved)

  ratio
s

t

pq p'q'

qr q'r'

p

q

r
p'

q'

r'
s

t

s
t

:

:





30

Affine transformations in OpenGL

OpenGL maintains a “modelview” matrix that holds 
the current transformation M.

The modelview matrix is applied to points (usually 
vertices of polygons) before drawing.

It is modified by commands including:

 glLoadIdentity() M  I
– set M to identity

 glTranslatef(tx, ty, tz) M  MT
– translate by (tx, ty, tz)

 glRotatef(θ, x, y, z) M  MR
– rotate by angle θ about axis (x, y, z)

 glScalef(sx, sy, sz) M  MS
– scale by (sx, sy, sz)

Note that OpenGL adds transformations by  
postmultiplication of the modelview matrix.



31

Summary

What to take away from this lecture:

 All the names in boldface.
 How points and transformations are represented.
 How to compute lengths, dot products, and cross 

products of vectors, and what their geometrical 
meanings are.

 What all the elements of a 2 x 2 transformation 
matrix do and how these generalize to 3 x 3 
transformations.

 What homogeneous coordinates are and how 
they work for affine transformations.

 How to concatenate transformations.
 The mathematical properties of affine 

transformations. 


