Hierarchical Modeling

CSE 457
Winter 2015

Reading

Required:
* Angel, sections 8.1 - 8.6, 8.8

Optional:

¢ OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

¢ spheres
¢ cubes
¢ cylinders

These symbols are instanced using an instance
transformation.

L) 7
M 2

Q: What is the matrix for the instance transformation
above?

()= Tes §)

3D Example: A robot arm

Upper arm

Lower arm

Have to be constrained via a hierarchical model

“Number One” Playgroup — Duran Duboi

3D Example: A robotarm

Consider this robot arm with 3 degrees of freedom:

+ Base rotates about its vertical axis by &
¢ Upper arm rotates in its xy-plane by ¢
¢ Lower arm rotates in its xy-plane by

Upper arm ,
o . 2 h3I
Base | = x x
5 N) ¢ W
¥4

X
z

[Angel, 2011]

(Note that the angles are set to zero in the figure; i.e.,
the parts are shown in their “default” positions.)

Q: What matrix do we use to transform the base? R&@\ [o
1Y

Q: What matrix for the upper arm? R(G\T(L\\\\Q (¢) a? ;(A
Q: What matrix for the lower arm? ?@\,{0\5 \l@e\— U“h R ((.\7) I

\ ¢

3D Example: A robotarm

An alternative interpretation is that we are taking the
original coordinate frames...

From parts to model to viewer

y Y
AT ‘
; /‘ ‘ ' Model or object space
:7—"/ - x —- X
z 0 z ¢ ? l//

Mmodel
Y
World space
Z
w
Myiew
Y
Ye . Eye or camera space
/o Le

Robot arm implementation

The robot arm can be displayed by keeping a global matrix
and computing it at each step:

Matrix M_model;
Matrix M _view;

main()

{

M_view = compute_view_transform();
robot_arm();

by

robot_arm()

{
M_model = M_view*R_y(theta);
base();
M_model = M_View*R_y(theta)*T(0,hl1,0)*R_z(phi);
upper_arm(Q);
M_model = M_view*R_y(theta)*T(0,h1,0)

*R_z(ph1)*T(0,h2,0)*R_z(psi);

lower_arm(Q);

by

Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time, we can
just update it in place by concatenating matrices on the right:

Matrix M_modelview;

main()

{

M_modelview

robot_arm();

robot_arm()

{

M_modelview
base();
M_modelview

upper_arm();

M_modelview

lower_arm();

= compute_view_transform();

*
I

= R_y(theta);

*

T(0,h1,0)*R_z(pht);

*= T(0,h2,0)*R_z(psi);

Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by

concatenating matrices on the right.
main()

{

glMatrixMode(GL_MODELVIEW);
Matrix M = compute_view xform();
glLoadMatrixf(M);

robot_arm();

robot_arm()

{

glRotatef(theta, 0.0, 1.0, 0.0);
base();

glTranslatef(0.0, h1, 0.0);
glRotatef(phi, 0.0, 0.0, 1.0);
lower_arm();

glTranslatef(0.0, h2, 0.0);
glRotatef(psi, 0.0, 0.0, 1.0);
upper_arm();

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

wheel wheel wheel wheel

Chassis Chassis
é-R L_§
R-F L-R .
Right-frontl Right-rearl Left-front | | Left-rear ==

Wov(d
* edges contain geometric transformations
+ nodes contain geometry (and possibly drawing M lo'lf 1§

attributes) "'[' [?
AS Kj

How might we

draw the tree for ‘L M W ﬂo 74

the robot arm? r
\MWJ_((ﬁm\
~‘ \l,/ M owes
l !ow@’ AN m‘k

A complex example: human figure

C!

\,\cz'%A

(o6

Mrul

60{'

Left-upper
leg

Right-upper
leg

Left-lower

leg

Right-lower
leg

Coi-

Q: What's the most sensible way to traverse this tree?

Fepth Bk

Implementing hierarchies:

A matrix stack that you can push/pop (LIFO).

Recursive algorithm that descends the model tree:
- Load identity matrix
- For each node:
- Push a new matrix onto stack
- Concatenate transformations onto current
- Recursively descend the tree
- Pop matrix out of stack
- For each leaf node:
- Draw using the current transformation matrix

Human figure implementation, OpenGL

figure()
{
torso();

c__;p glPushMatrix();
glTranslate(...);
glRotate(...);
head(Q);

glPopMatrix();

___;) glPushMatrix();

glTranslate(...);
glRotate(...); ULW/
left_upper_arm();
—) glPushMatrixQ;
glTranslate(...); \/xébh//f,
glRotate(...); llﬂ)
left_lower_arm();

glPopMatrix() Q‘Il FL‘ SL\

glPopMatrix(); I
y Shvagn (O
a4

it
o0

Animation

The above examples are called articulated models:
\-K’_’_

¢ rigid parts

¢ connected by joints

They can be animated by specifying the joint angles

(or other display parameters) as functions of time.

Key-frame animation

The most common method for character animation in
production is key-frame animation.

¢ Each joint specified at various key frames (not
necessarily the same as other joints)

¢ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

+ A good interactive system

+ A lot of skill on the part of the animator

6 1+ ()

Scene graphs

The idea of hierarchical modeling can be extended to
an entire scene, encompassing:

+ many different objects

¢ lights
¢ camera position

This is called a scene tree or scene graph.

Scene

Camera Xform1

Light1 .
Light2 ObJeCﬂ\‘

/ Geometry1

Xformz2 Materials1

/ Xform3

Object2 &

Object3

Summary

Here’s what you should take home from this lecture:

*

*

All the boldfaced terms.

How primitives can be instanced and composed
to create hierarchical models using geometric
transforms.

How the notion of a model tree or DAG can be
extended to entire scenes.

How OpenGL transformations can be used in
hierarchical modeling.

How keyframe animation works.

