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Lecture 18: Curve Details
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Alternative Bezier Formulation
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Displaying Bézier curves

How could we draw one of these things?

It would be nice if we had an adaptive algorithm, that would 
take into account flatness.

DisplayBezier( V0, V1, V2, V3 ) 

begin

if ( FlatEnough( V0, V1, V2, V3 ) )

Line( V0, V3 );

else

do something smart;

end;
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Subdivide and conquer

DisplayBezier( V0, V1, V2, V3 ) 

begin

if ( FlatEnough( V0, V1, V2, V3 ) )

Line( V0, V3 );

else

Subdivide(V) ⇒ L, R

DisplayBezier( L0, L1, L2, L3 );

DisplayBezier( R0, R1, R2, R3 );

end;
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Testing for flatness

Compare total length of control polygon to length of line 
connecting endpoints:
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More complex curves

Suppose we want to draw a more complex curve.

Why not use a high-order Bézier?

Instead, we’ll splice together a curve from individual segments that are 
cubic Béziers.

Why cubic?

There are three properties we’d like to have in our newly constructed 
splines…
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Local control

One problem with Béziers is that every control point affects every point 
on the curve (except the endpoints).

Moving a single control point affects the whole curve!

We’d like our spline to have local control, that is, have each control point 
affect some well-defined neighborhood around that point.
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Interpolation

Bézier curves are approximating.  The curve does not 
(necessarily) pass through all the control points.  Each point 
pulls the curve toward it, but other points are pulling as well.

We’d like to have a spline that is interpolating, that is, that 
always passes through every control point.
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Continuity

We want our curve to have continuity.  There shouldn’t be an abrupt 
change when we move from one segment to the next.

There are nested degrees of continuity:

C0: C1:

C2: C3, C4, …:

C2

C1  only
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Ensuring continuity

Let’s look at continuity first.

Since the functions defining a Bézier curve are polynomial, 
all their derivatives exist and are continuous.

Therefore, we only need to worry about the derivatives at the 
endpoints of the curve.

First, we’ll rewrite our equation for Q(t) in matrix form:
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Derivatives at the endpoints

In general, the nth derivative at an endpoint depends only on 
the n+1 points nearest that endpoint.
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Ensuring C2 continuity

Suppose we have a cubic Bézier defined by (V0,V1,V2,V3), 
and we want to attach another curve (W0,W1,W2,W3) to it, 
so that there is C2 continuity at the joint.
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A-frames and continuity

Let’s try to get some geometrical intuition about what this last
continuity equation means.

If a and b are points, what is (2a-b)?
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Building a complex spline

Instead of specifying the Bézier control points themselves, let’s specify 
the corners of the A-frames in order to build a C2 continuous spline.

These are called B-splines.  The starting set of points are called de Boor 
points.
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B-splines

Here is the completed B-spline.

What are the Bézier control points, in terms of the de Boor 
points?
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Endpoints of B-splines

We can see that B-splines don’t interpolate the de Boor 
points.

It would be nice if we could at least control the endpoints of 
the splines explicitly.

There’s a hack to make the spline begin and end at control 
points by repeating them.
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B-spline basis matrix
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C2 interpolating splines

Interpolation is a really handy property to have.

How can we keep the C2 continuity we get with B-splines but get 
interpolation, too?

Here’s the idea behind C2 interpolating splines.  Suppose we had cubic 
Béziers connecting our control points C0, C1, C2, …, and that we 
somehow knew the first derivative of the spline at each point.

What are the V and W control points in terms of Cs and Ds?
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Finding the derivatives

Now what we need to do is solve for the derivatives.  To do 
this we’ll use the C2 continuity requirement.
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Finding the derivatives, cont.

Here’s what we’ve got so far:

How many equations is this?  

How many unknowns are we solving for?
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Not quite done yet

We have two additional degrees of freedom, which we can 
nail down by imposing more conditions on the curve.

There are various ways to do this.  We’ll use the variant 
called natural C2 interpolating splines, which requires the 
second derivative to be zero at the endpoints.

This condition gives us the two additional equations we need.  
At the C0 endpoint, it is:
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Solving for the derivatives

Let’s collect our m+1 equations into a single linear system:

It’s easier to solve than it looks.

We can use forward elimination to zero out everything below the 
diagonal, then back substitution to compute each D value.

0 1 0

1 2 0

2 3 1

1 2

1

3( )2 1

3( )1 4 1

3( )1 4 1

3( )1 4 1

3( )1 2
m m m

m m m

D C C

D C C

D C C

D C C

D C C
− −

−

−    
     −    

−    
=    

    
     −
     −     

M MO



23

C2 interpolating spline

Once we’ve solved for the real Dis, we can plug them in to find our Bézier 
control points and draw the final spline:

Have we lost anything?
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A third option

If we’re willing to sacrifice C2 continuity, we can get 
interpolation and local control.

Instead of finding the derivatives by solving a system of 
continuity equations, we’ll just pick something arbitrary but 
local.

If we set each derivative to be a constant multiple of the 
vector between the previous and next controls, we get a 
Catmull-Rom spline.
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Catmull-Rom splines

The math for Catmull-Rom splines is pretty simple:
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Catmull-Rom basis matrix
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Summary

What to take home from this lecture:

w How to display Bézier curves with line segments.

w Meanings of Ck continuities.

w Geometric conditions for continuity of cubic splines.

w Properties of C2 interpolating splines, B-splines, and 
Catmull-Rom splines.

w Geometric and algebraic construction of B-splines and 
Catmull-Rom splines.


