Lecture 4: Image Processing

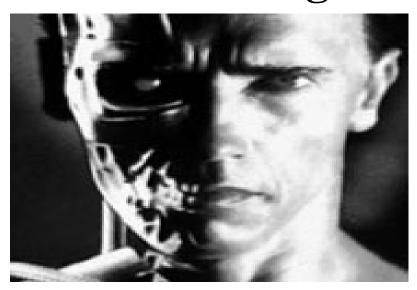
Definitions

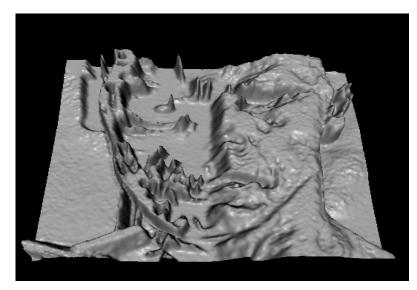
- Many graphics techniques that operate only on images
- **Image processing**: operations that take images as input, produce images as output
- In its most general form, an image is a function f from R² to R
 - f(x, y) gives the intensity of a channel at position (x, y)
 - defined over a rectangle, with a finite range: $f: [a,b] \times [c,d] \rightarrow [0,1]$
 - A color image is just three functions pasted together:
 - $f(x, y) = (f_r(x, y), f_g(x, y), f_b(x, y))$

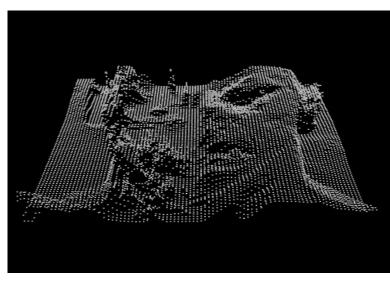
Images

- In computer graphics, we usually operate on digital (discrete) images
 - Quantize space into units (pixels)
 - Image is constant over each unit
 - A kind of step function
 - $f: \{0 \dots m-1\} \times \{0 \dots n-1\} \rightarrow [0,1]$
- An image processing operation typically defines a new image f in terms of an existing image f

Images as Functions







Pixel-to-pixel Operations

• The simplest operations are those that transform each pixel in isolation

$$f'(x, y) = g(f(x,y))$$

• Example: threshold, $RGB \rightarrow greyscale$

Pixel Movement

• Some operations preserve intensities, but move pixels around in the image

$$f'(x, y) = f(g(x,y), h(x,y))$$

• Examples: many amusing warps of images

Noise

Common types of noise:

Original

Impulse noise

Salt and pepper noise

Gaussian noise

Noise Reduction

• How can we "smooth" away noise?

Convolution

- Convolution is a fancy way to combine two functions.
 - Think of f as an image and g as a "smear" operator
 - g determines a new intensity at each point in terms of intensities of a neighborhood of that point

$$h(x,y) = f(x,y) * g(x,y)$$
$$= \int_{-\infty}^{\infty} f(x',y')g(x-x',y-y')dx'dy'$$

• The computation at each point (*x*, *y*) is like the computation of cone responses

Discrete Convolution

• Since digital images are like step functions, integration becomes summation. We can express convolution as a two-dimensional sum:

$$egin{array}{ll} h[i,j] &=& f[i,j] * g[i,j] \ &=& \sum\limits_k \sum\limits_l f[k,l] g[i-k,j-l] \end{array}$$

Convolution Representation

• Since f and g are defined over finite regions, we can write them out in two-dimensional arrays:

62	79	23	119	120	105	4	0
10	10	9	62	12	78	34	0
10	58	197	46	46	О	О	48
176	135	5	188	191	68	О	49
2	1	1	29	26	37	О	77
0	89	144	147	187	102	62	208
255	252	О	166	123	62	О	31
166	63	127	17	1	О	99	30

X .2	× o	X .2
×ο	X .2	ΧO
X .2	×o	X .2

Mean Filters

• How can we represent our noise-reducing averaging filter as a convolution diagram?

Using Mean Filters

Gaussian noise

Salt and pepper noise

5x5

7x7

Gaussian Filters

 Gaussian filters weigh pixels based on their distance to the location of convolution.

$$g[i,j] = e^{-(i^2+j^2)/(2\sigma^2)}$$

- Blurring noise while preserving features of the image
- Smoothing the same in all directions
- More significance to neighboring pixels
- Width parameterized by σ
- Gaussian functions are separable

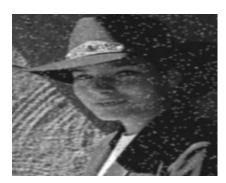
Using Gaussian Filters

Gaussian noise

Salt and pepper noise

3x3

5x5



7x7

Median Filters

- A **Median Filter** operates over a *k***x***k* region by selecting the median intensity in the region.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Using Median Filters

Gaussian noise

Salt and pepper noise

3x3

5x5

7x7

Edge Detection

- One of the most important uses of image processing is edge detection
 - Really easy for humans
 - Really difficult for computers
 - Fundamental in computer vision
 - Important in many graphics applications
- What defines an edge?

Step	
Ramp ——	
Line	
Roof	

Gradient

• The **gradient** is the 2D equivalent of the derivative:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

- Properties of the gradient
 - It's a vector
 - Points in the direction of maximum increase of f
 - Magnitude is rate of increase
- How can we approximate the gradient in a discrete image?

Edge Detection Algorithms

- Edge detection algorithms typically proceed in three or four steps:
 - Filtering: cut down on noise
 - Enhancement: amplify the difference between edges and nonedges
 - Detection: use a threshold operation
 - Localization (optional): estimate geometry of edges beyond pixels

Edge Enhancement

• A popular gradient magnitude computation is the **Sobel operator**:

$$s_x = \left[egin{array}{cccc} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{array}
ight]$$

$$s_y = \left[egin{array}{cccc} 1 & 2 & 1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{array}
ight]$$

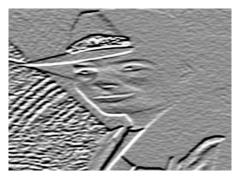
• We can then compute the magnitude of the vector (s_x, s_y)

Using Sobel Operators

Original

Smoothed

Sx + 128



Sy + 128

Magnitude

Threshold = 64

Threshold = 128

Second Derivative Operators

- The Sobel operator can produce thick edges. Ideally, we're looking for infinitely thin boundaries.
- An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.
- We can find these by looking for zeroes in the *second* derivative
- Using similar reasoning as above, we can derive a Laplacian filter, which approximates the second derivative:

$$\Delta^2 = \left[egin{array}{ccc} 0 & 1 & 0 \ 1 & -4 & 1 \ 0 & 1 & 0 \end{array}
ight]$$

• Zero values in the convoluted image correspond to extreme gradients, i.e. edges.

Summary

- Formal definitions of image and image processing
- Kinds of image processing: pixel-to-pixel, pixel movement, convolution, others
- Types of noise and strategies for noise reduction
- Definition of convolution and how discrete convolution works
- The effects of mean, median and Gaussian filtering
- How edge detection is done
- Gradients and discrete approximations