Lecture 21: Particle Dynamics

Reading

Particle Systems Dynamics handout

Optional:

Hocknew and Eastwood. Computer simulation using particles. Adam Hilger, New York, 1988.

Gavin Miller. "The motion dynamics of snakes and worms." *Computer Graphics* 22:169-178, 1988.

Overview

- One lousy particle
- Particle systems
- Forces: gravity, springs
- Implementation

Newtonian particle

- Differential equations: f=ma
- Forces depend on:
- Position, velocity, time

$$\mathbf{x} = \frac{f(x, \mathbf{x} t)}{m}$$

Second order equations

$$\frac{f(x, x, t)}{m}$$

Has 2nd derivatives

$$\begin{bmatrix} x = v \\ x = \frac{f(x, x = t)}{m} \end{bmatrix}$$

Add a new variable v to get a pair of coupled 1st order equations

Phase space

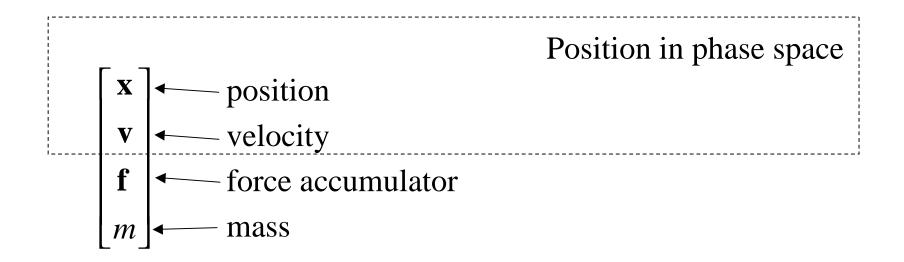
 $\begin{bmatrix} x \\ v \end{bmatrix}$ Concatenate x and v to make a 6-vector: position in phase space

Velocity on Phase space: Another 6-vector

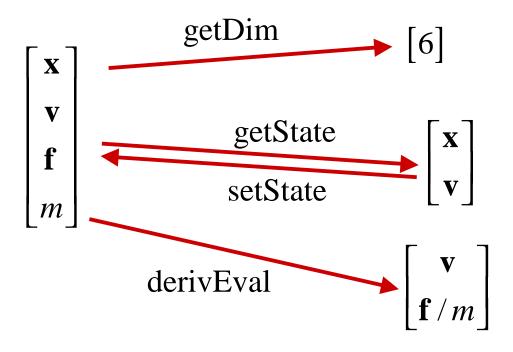
x

 $\begin{bmatrix} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} v \\ f/m \end{bmatrix}$ A vanilla 1st-order differential equation

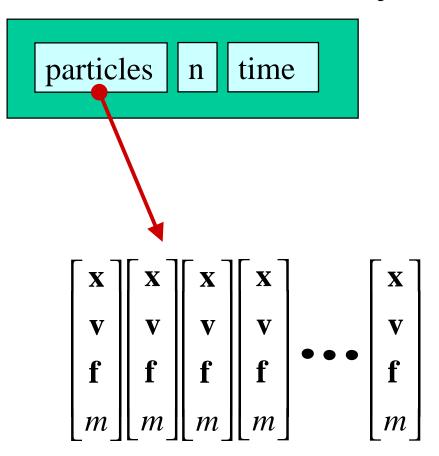
Particle structure



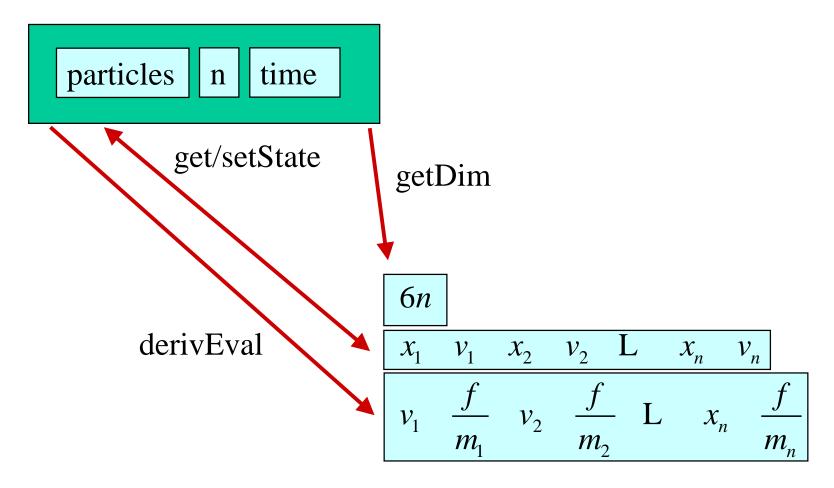
Solver interface



Particle systems



Solver interface



Differential equation solver $\begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} v \\ f/m \end{bmatrix}$

Euler method: $x(t+h) = x(t) + h \cdot \mathbf{x}(t)$ $\mathbf{x}_{i+1} = \mathbf{x}_i + \nabla t \cdot \mathbf{x}_i$ $\mathbf{v}_{i+1} = \mathbf{v}_i + \nabla t \cdot \mathbf{v}_i$

Gets very unstable for large Vt

Higher order solvers perform better: (e.g. Runge-Kutta)

derivEval loop

- 1. Clear forces
 - Loop over particles, zero force accumulators
- 2. Calculate forces
 - Sum all forces into accumulators
- 3. Gather
 - Loop over particles, copying v and f/m into destination array

Forces

- Constant (gravity)
- Position/time dependent (force fields)
- Velocity-dependent (drag)
- N-ary (springs)

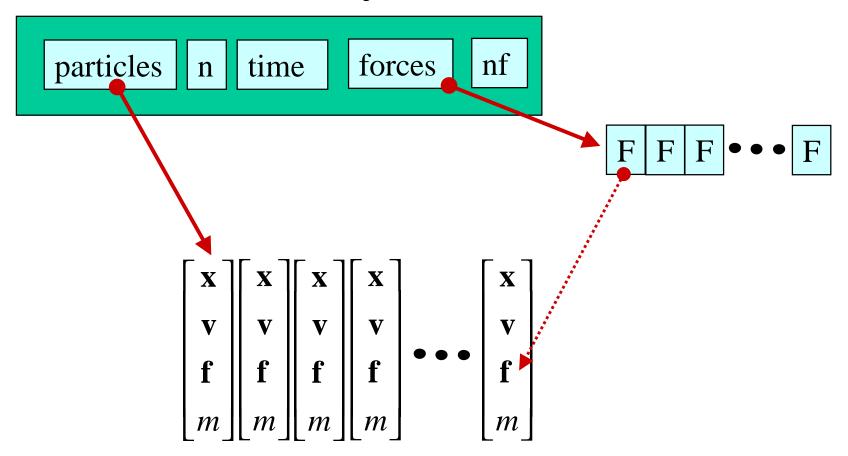
Force structures

Force objects are black boxes that point to the particles they influence, and add in their contribution into the force accumulator.

Global force calculation:

• Loop, invoking force objects

Particle systems with forces



Gravity

Force law:

$$\mathbf{f}_{grav} = m\mathbf{G}$$
 $p \rightarrow \mathbf{f} + \mathbf{p} \rightarrow \mathbf{m} * \mathbf{F} \rightarrow \mathbf{G}$

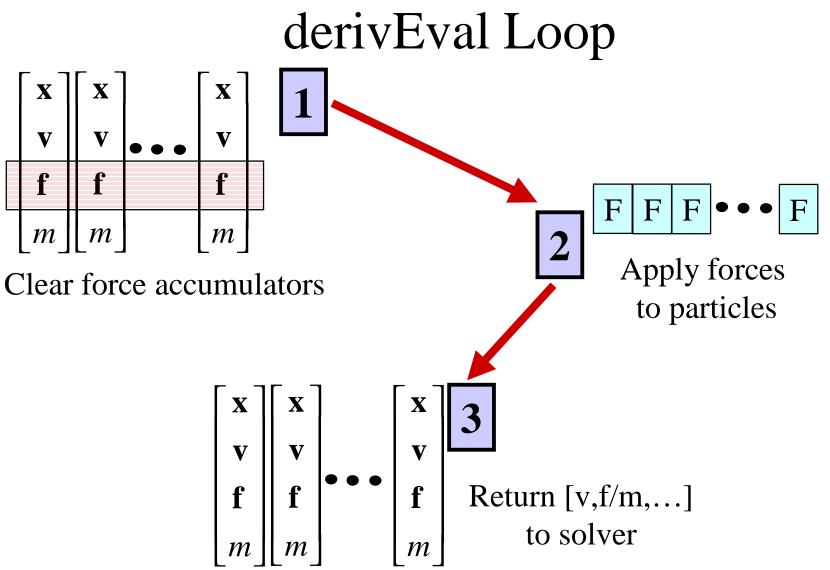
Viscous drag

$$\mathbf{f}_{drag} = -k_{drag} \mathbf{v}$$

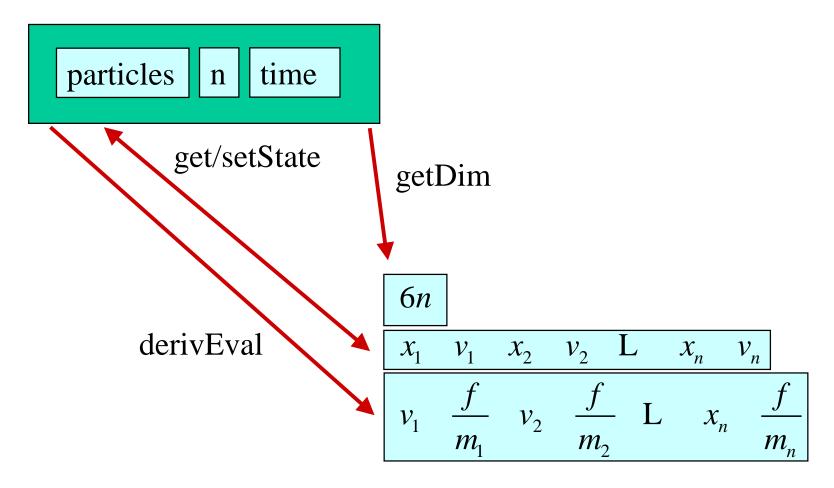
Damped spring

Force law:

$$\mathbf{f}_{1} = -\left[k_{s}(|\mathbf{V}\mathbf{x}| - \mathbf{r}) + k_{d}\left(\frac{|\mathbf{V}\mathbf{v}|\mathbf{x}|}{|\mathbf{V}\mathbf{x}|}\right)\right] \frac{|\mathbf{V}\mathbf{x}|}{|\mathbf{V}\mathbf{x}|}$$
$$\mathbf{f}_{2} = -\mathbf{f}_{1}$$
$$\mathbf{r} = \text{rest length}$$
$$\mathbf{V}\mathbf{x} = x_{1} - x_{2}$$



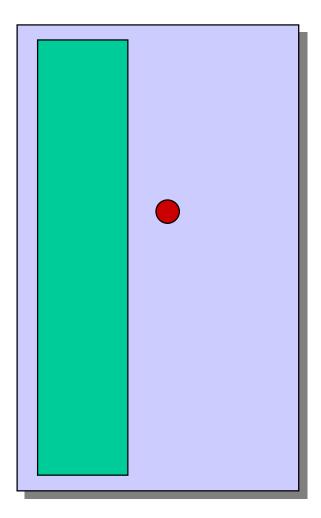
Solver interface



Differential equation solver $\begin{bmatrix} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} v \\ f/m \end{bmatrix}$

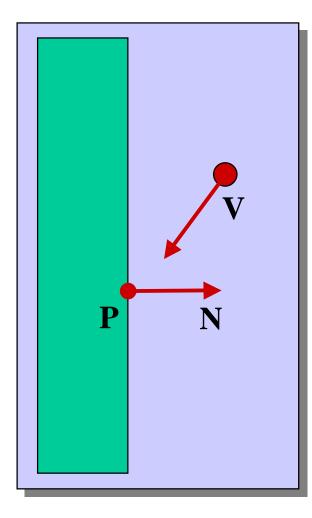
Euler method: $\begin{bmatrix} x_{1}^{i+1} \\ v_{1}^{i+1} \\ M \\ x_{n}^{i+1} \\ v_{n}^{i+1} \end{bmatrix} = \begin{bmatrix} x_{1}^{i} \\ v_{1}^{i} \\ v_{1}^{i} \\ M \\ M \\ x_{n}^{i} \\ v_{n}^{i} \end{bmatrix} + Vt \begin{bmatrix} v_{1}^{i} \\ f_{1}^{i} / m_{1} \\ M \\ v_{n} \\ v_{n}^{i} \\ f_{n}^{i} / m_{n} \end{bmatrix}$

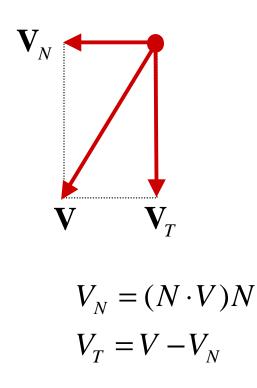
Bouncing off the walls



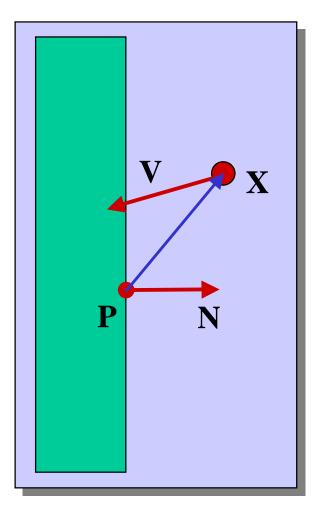
- Add-on for a particle simulator
- For now, just simple point-plane collisions

Normal and tangential components



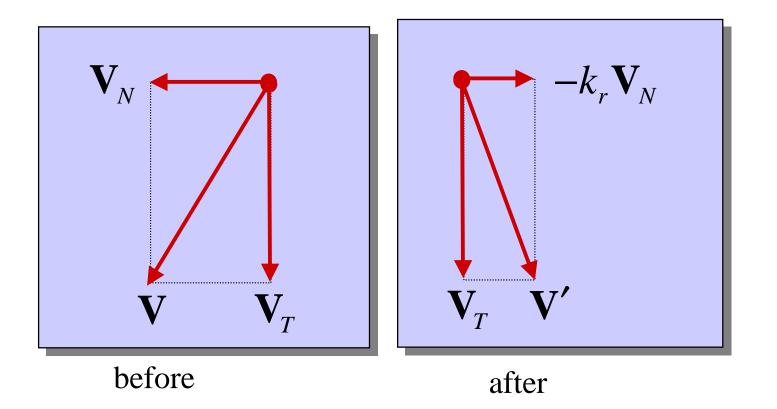


Collision Detection



 $(\mathbf{X} - \mathbf{P}) \cdot \mathbf{N} < \varepsilon$ Within e of the wall $\mathbf{N} \cdot \mathbf{V} < 0$ Heading in

Collision Response



$$\mathbf{V'} = \mathbf{V}_T - k_r \mathbf{V}_N$$

Summary

- Physics of a particle system
- Various forces acting on a particle
- Combining particles into a particle system
- Euler method for solving differential equations