CSE/EE 461 - Lecture 14

David Wetherall djw@cs.washington.edu

Last Time · Wrap up on the Transport Layer Application Focus Presentation - How does TCP share bandwidth? Session Topics Network - Slow-start and congestion avoidance Data Link - Fast retransmission and recovery Physical

djw // CSE/EE 461, Winter 2000

This Time Naming Application Focus Presentation Session - How do we name hosts etc.? Transport Network - Domain Name System (DNS) Data Link - Email/URLs Physical

L12.3

Naming in Systems

Ubiquitous

diw // CSE/EE 461. Winter 2000

- Files in filesystem, processes in OS, pages on the web, ...
- · Decouple identifier for object/service from location
- Hostnames provide a level of indirection for IP addresses
- Naming greatly impacts system capabilities and performance
 - Ethernet addresses are a unique flat 48 bits
 - unique \rightarrow management; flat \rightarrow any address anywhere
 - IP addresses are hierarchical 32/128 bits
 - hierarchy \Rightarrow smaller routing tables but constrained locations

djw // CSE/EE 461, Winter 2000

Case Study: Internet Hostnames

- · Hostnames are human-readable identifiers for endsystems based on an administrative hierarchy
 - galah.cs.washington.edu is my desktop machine
- · IP addresses are a fixed-length binary encoding for endsystems based on their position in the network
 - 128.95.2.106 is galah's IP address
- Original name resolution: HOSTS.TXT
- · Current name resolution: Domain Name System
- Future name resolution: ?

djw // CSE/EE 461, Winter 2000

Original Hostname System

- · When the Internet was really young ...
- Flat namespace
 - Simple (host, address) pairs
- Centralized management
 - Updates via a single master file called HOSTS.TXT
 - Manually coordinated by the Network Information Center (NIC)
- · Resolution process
 - Look up hostname in the HOSTS.TXT file

diw // CSE/EE 461 Winter 2000

L12.7

Scaling Problems

- Coordination
 - Between all users to avoid conflicts
- Inconsistencies
 - Between update and distribution of new version
- Reliability
 - Single point of failure
- Performance
 - Competition for centralized resources

diw // CSE/EE 461 Winter 2000

1128

Domain Name System (DNS)

- Mockapetris and Dunlap mid 80s; Keshav 10, esp. 10.8
- · Namespace is hierarchical
 - Allows much better scaling of data structures
 - e.g., galah.cs.washington.edu
- · Namespace is distributed
 - Decentralized administration and access
 - e.g., galah managed by CSE
- Resolution is by query/response
 - With replicated servers for redundancy
 - With heavy use of caching for performance

djw // CSE/EE 461, Winter 2000

L12.9

edu com mil org au "dot" is the root of the hierarchy Top levels now controlled by ICANN Lower level control is delegated Usage governed by conventions FQDN = Fully Qualified Domain Name

DNS Components

- Data managed by <u>zones</u> that contain <u>resource records</u>
 - Zone is a complete description of a portion of the namespace
 - e.g., all hosts and addresses for machines in washington.edu with pointers to subdomains like cs.washington.edu
- One or more $\underline{nameservers}$ manage each zone
 - Zone transfers performed between nameservers for consistency
 - Multiple nameservers provide redundancy
- C lient $\underline{resolvers}$ query nameservers for specified records
 - Multiple messages may be exchanged per DNS lookup to navigate the name hierarchy (coming soon)

djw // CSE/EE 461, Winter 2000

L12.11

DNS Lookups - DNS queries/responses carried on UDP port 53 - Client 192.12.69.60 | Client 192.12.69.60 | Cs. princeton.edu, 192.12.69.50 | Cs. princeton.edu, 192.12.69.5 | Cs. princeton.edu, 192.1

Caching

- · Servers and clients cache results of DNS lookups
 - Cache partial results too (e.g., server for princeton.edu)
 - Greatly improves system performance; lookups the rare case
- · Cache using time-to-live (TTL) value from provider
 - higher TTL means less traffic, lower TTL means less stale info
- · Negative caching is used too!
 - errors can cause repeated queries for non-existent data

djw // CSE/EE 461, Winter 2000

DNS Bootstrapping

- · Need to know IP addresses of root servers before we can make any queries
- · Addresses for 13 root servers ([a-m].root-servers.net) handled via initial configuration (named.ca file)

diw // CSE/EE 461. Winter 2000

L12.15

Finally, Reverse Queries

- · How do we find out what hostname corresponds to an IP address?
 - Used as a weak authentication check by many web servers
- · Idea: Reuse existing DNS machinery
 - Called the IN-ADDR.ARPA domain
 - Reverse IP address and query in that domain
 - e.g., 106.2.95.128.IN-ADDR.ARPA

djw // CSE/EE 461, Winter 2000

L12.16

Building on the DNS

- · Other naming designs leverage the DNS
- - <u>djw@cs.washington.edu</u> is djw in the domain cs.washington.edu
- · Uniform Resource Locators (URLs) name for Web pages
 - e.g., www.cs.washington.edu/homes/djw
 - Use domain name to identify a Web server
 - Use "/" separated string to name path to page (like files)

djw // CSE/EE 461, Winter 2000

Email

- Mail messages delivered between mailboxes with SMTP (Simple Mail Transport Protocol) over TCP port 25
 - SMTP defines mail/address formats, and handoff procedures
 - Other protocols (POP3, IMAP) used to check your mailbox
- Question:
 - How do we find the mailbox for djw@cs.washington.edu?
- Answer:

 - Might contact host cs.washington.edu ... not done
 Instead, look up MX (Mailer Exchange) DNS record for domain
 - Saves users from knowing internal details

djw // CSE/EE 461, Winter 2000

Email Names and Addresses User user @ cs.princeton.edu Name MX query Mail program 192.12.69.5 4 TCP 192.12.69.5 5 IP

Web/URLs

- Pages retrieved from Web server by client (browser) using HTTP (HyperText Transfer Protocol) running on TCP port 80 (typically)
 - HTTP defines format of requests/responses
 - Each page a separate connection (until persistent HTTP)
 - Try telnet <webserver> 80 and then "GET /index.html"
- · Question:
- How do we find the server www.mit.edu?
- · Answer:
 - Ah ha! What about looking up a "WX" record in the DNS \dots No
 - Instead, use hostname as Web server directly

djw // CSE/EE 461, Winter 2000 L12.20

Future Evolution of the DNS

- Design constrains us in two major ways that are increasingly less appropriate
- · Static host to IP mapping
 - What about mobility (Mobile IP) and dynamic address assignment (DHCP)
- Location-insensitive queries
 - What if I don't care what server a Web page comes from, as long as it's the right page?
 - e.g., a yahoo page might be replicated

djw // CSE/EE 461, Winter 2000

L12.21

Akamai

· Use the DNS to effect selection of a nearby Web cache

- · Leverage separation of static/dynamic content
- Beware DNS caching

djw // CSE/EE 461, Winter 2000 L12.22

Key Concepts

- The design of names, addresses and resolution has a significant impact on system capabilities
- Hierarchy, decentralization and caching allow the DNS to scale
 - These are general techniques

djw // CSE/EE 461, Winter 2000

L12.23