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Fishnet Assignment 1: Ping and Flood 
Due: Friday, Oct 11, 2002 at the beginning of class.  Out: Monday, Sep 30, 2002.  

CSE/EE461 Autumn 2002; Wetherall. 

In this assignment, you will work in teams of two to develop a single C program that is a 
Fishnet node. Your node will participate with those written by other students in an ad-hoc 
network run on the IPAQs and exchange simple messages. We will extend the nodes and 
network with functionality throughout the quarter. The goals of this first assignment are 
to become familiar with the Fishnet development environment and to understand packet 
forwarding concepts.  

1 Preliminaries 
Before you write any code, make sure you work through the Introduction to Fishnet 
handout. This covers basics such as using the CSE Lab machines, installing the Fishnet 
development environment, and how to set up a Fishnet network. It also tells you key 
things to do before you try to run your node on the live class network using your IPAQ. 
You will receive your IPAQ and address for the class network in section. You don’t 
actually need to use it until you have working code, since you develop and test your code 
on the CSE Lab machines; the IPAQ is mainly for using the network. 

2 What To Develop 
Your assignment is to write a C program in a file hw1.c that acts as a Fishnet node with 
the following three types of functionality: 

1. Flooding. Your node “floods” each packet that it handles so that it reaches all other 
nodes connected to the network. You must decide exactly how your flooding function 
will work (there is probably more than one choice) but it must be accomplished 
subject to the following constraints:   

• The flooding logic must work for all kinds of packets but ONLY use packet 
information accessible from packets of type struct packet as defined in 
fish.h. You must implement functionality to fill in all of the fields in these 
packets as they are intended. This is necessary so that your flooding 
implementation can interoperate with our implementation as well as that of 
other students. 

• Flooding must deliver a copy of every packet that is sent by any node to all of 
the other nodes. As each of the other nodes receives their copies of the packet, 
they will process one copy of it further (e.g., for ping, below) only if the 
packet is destined for them. It may be destined for them either directly, if the 
destination address of the packet is their node address, or as part of a network-
wide broadcast, if the destination address is the broadcast address. Actually, 
your flooding algorithm doesn’t need to get copies of a packet to nodes that 
will not process them, as long as it does get copies of the packet to all nodes 
that will process them. 
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• Notwithstanding the above, flooding will fail to deliver a copy of a packet to 
all other nodes that will process it in a couple of situations. First, packets can 
be lost during transmission, e.g., corrupted due to noise on the wireless link, 
detected as a checksum failure. Second, as part of using packets of type 
struct packet you must implement functionality to update the TTL field 
when packets are forwarded. This will cause packets to be discarded without 
being forwarded if their TTL reaches zero.  

• Your flooding design must prevent packets from circulating indefinitely. This 
requires that your node work out when it has already performed its flooding 
work for a given packet and not flood it again. The header fields in packet 
(pktid and source in particular) are suited to this task. 

• Your flooding must work for all network topologies including those that 
change as nodes move, yet without a priori knowledge of the topology. You 
should not build up maps of which nodes are where in the network. Building 
up maps, called routing, can greatly improve the efficiency of communication 
but can be surprisingly complicated – we will study it in the next assignment. 

• As a tip, you can use broadcast as the first parameter to fish_send() to 
relay packets between nodes. This allows you to send a packet to all of your 
neighboring nodes (within radio range or directly connected as part of the 
managed overlay) without knowing their individual node addresses. There is 
no other way to send your neighboring nodes a message until you have 
discovered their identities, which you will not be able to do until you have 
completed this assignment (except a priori for simple networks that you set up 
yourself). 

• As a tip, to simplify your implementation you can assume that the network 
contains only a small number of nodes (less than 100), all of which have small 
addresses (less than 100). A better implementation will work with larger node 
addresses and networks, but this is not necessary for the first assignment. 

The reason you are implementing flooding is that, without it or some more 
complicated alternative, one node cannot send a message to a distant node in the 
network that is out of radio range. Flooding uses other, in-between nodes to relay or 
forward the message. Flooding variations are used as components of other network 
protocols, such as link-state routing (Peterson 4.2) that we will study later in the 
course. They are normally used to provide point-to-all communication, and are very 
inefficient as a way to send a message from one node to another, as we will for ping 
below. However, flooding will get us started with networking and motivate the need 
for more efficient techniques (routing) in subsequent assignments.  

A good flooding design (or network protocol in general) will use no more packet 
transmissions or node resources than necessary to accomplish its function. As you 
develop your design, you should check that it works (all nodes receive a copy of each 
transmission they need to process and yet the flood eventually stops) and see how 
many packets you are using to make it work. You should do this for several different 
topologies (use --help to fishhead to see your options). 
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2. Ping. Your node can “ping” another node (bounce a packet off of it) to check that it is 
working. Ping is a well-known Internet utility that is used to check that a remote host 
is alive – try “man ping” and see RFC 792 Internet Control Message Protocol 
(http://www.rfc-editor.org/rfc.html) for inspiration. You decide exactly how your 
ping function will work (there may be only one choice here!) within these constraints: 

• You must use ONLY packets of type struct echo_packet (defined in 
fish.h) as they are intended. This is necessary so that your node can interoperate 
with other nodes. 

• If you ping using a packet with the address of a particular node as the destination, 
then only that node should respond to the ping. If you ping using a packet with the 
network broadcast address as the destination (and you have implemented 
flooding) then all nodes in the network should respond. 

• As before, you do not need to worry about reliability in the case that ping packets 
are lost, e.g., due to corruption on the wireless link. In real life, packets are 
occasionally dropped on the Internet, and so ping tries to bounce several packets 
off of a remote host to see if it is alive. 

• As a tip, you will probably want to use keyboard (or other) input as a command to 
cause you to “ping” a node as well as output. See the hello.c program for an 
example of a command. You may also want to print output, and perhaps make a 
sound on the IPAQ, when you successfully ping or are pinged by another node so 
that you notice someone is communicating with you. 

3. Neighbor Discovery. Your node continuously probes the network at a low-rate to 
discover its immediate neighbors in the network topology. Again, you devise a 
solution within these constraints:  

• You must not use any additional kinds of packets. This task can be achieved by a 
careful combination of the functions that you have already built (ping, flooding, 
the network broadcast address, and the TTL field). 

• Neighbors disappear (when nodes move away or are turned off) as well as appear 
(when nodes move into range or are turned on). You will want to print out the 
current list of neighbors so you can see who they are, perhaps only printing when 
there is a change 

• As a tip, you will need to use timers, e.g., fishnet_scheduleevent(), to 
implement continuous, low-rate background activity. Be very careful with 
automated mechanisms, especially when using flooding and broadcast! They 
should operate on the timescale of at least tens of seconds (tens of thousands of 
milliseconds in the API calls!) or you may inadvertently bring down the building 
wireless network. 

The reason you are implementing neighbor discovery is to provide some way to find 
out when your IPAQ comes into contact with other class nodes. You may want to 
play a sound on your IPAQ to alert you this situation. Once you know your 
neighbors, you can ping them directly using their addresses. This is what you will 
need to do as part of turn-in. 
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A good design will use very little bandwidth yet keep a reasonably accurate set of 
neighbors. As a challenge, note that we can implement neighbor discovery with echo 
packets and flooding without having packets be processed at any nodes except the 
neighboring nodes! 

The above constitutes the intellectual bulk of your assignment. It is probably simplest to 
implement the functions in the order they are given above, starting with hello.c. As you 
write your program, note that our (fairly verbose) sample solution is not especially long. 
If you are writing hundreds of lines of code then you are probably doing something the 
hard way and should talk to us about it. Make sure you comment your code so that your 
protocol designs are apparent to us; we expect these comments in lieu of separate, 
detailed written descriptions. Good comments don’t belabor the obvious (e.g., “calling 
the main loop” near fish_main()). Rather, good comments tell us how you have arranged 
your code and assumptions you have make, as well as anything non-obvious. 

3 Design Philosophy 
There are two key issues to bear in mind as you design your solutions, for this assignment 
and all future ones. 

Robustness Principle. An important rule of thumb in building network protocols is “Be 
conservative in what you do, be liberal in what you accept from others.” (RFC 793, 
Transmission Control Protocol, http://www.rfc-editor.org/rfc.html). This helps different 
implementations of a protocol (e.g., the sample solution, your program, and your 
classmates’ programs) to work together reliably.  This principle means you should be 
careful to send packets that strictly comply with the intended usage of the packet formats 
as described in fish.h so that other nodes can handle them, but you should do the best you 
can with whatever packets you receive from other nodes.  Of course, you will get it right, 
but they will send broken packets. In particular, other nodes shouldn’t be able to crash 
your node by sending it bad packets. If your node does crash, it’s your responsibility to 
find out what happened and fix it. 

Interoperable Designs. It is also possible that different students will design protocols that 
are not compatible with each other in the class Fishnet, even if everyone’s code is robust 
as defined above. We hope that strict adherence to the packet formats and their intended 
usage will result in compatible protocols, without any further need for specifications or 
constraints on your designs, but we can’t guarantee this. Therefore, you must check that 
your design is legal in that it interoperates with the reference executable that we provide. 
You must do this in your own, private fishnet before attempting to join the shared, class 
network running on the IPAQs or you may interfere with the proper functioning of the 
class network.  It is everyone’s responsibility to work towards compatible, interoperable 
protocol designs by checking for incompatibilities and discovering what further design 
details we need to make together, as a class. This is a very real issue in the Internet, and 
part of what you will learn during the course. 

4 Discussion Questions 
1. Describe one advantage and one disadvantage of the “upcall” style of programming. 



Page 5 of 5 

2. Flooding includes a mechanism to prevent packets from circulating indefinitely, and 
the TTL field provides another such mechanism. Why have both? What would 
happen if we only had flooding checks? What would happen if we had only the TTL? 

3. When your node pings a remote node using its particular destination address (rather 
than the network broadcast address), how many requests does the remote node 
receive and why? How many responses does your node receive and why?  

4. When your node pings a remote node using its particular destination address (rather 
than the network broadcast address), how many request and response packets do other 
nodes handle? How many of these packets are unnecessary, and could probably be 
eliminated with smarter networking protocols?  

5. Describe one design decision you could have made differently, and the pros and cons 
compared to the decision you made.  

Write only a few, short sentences for each of these questions! 

5 Turn-In  
For this and future assignments, you need to demonstrate that your IPAQ works in the 
class network as well as turn in both electronic and paper material as follows.   

1. Run a three node private fishnet (using your program only, not the sample 
solution), with each node running in a separate window.  Make the nodes form a 
chain network (see ./fishhead --help and look for chain). From one 
node, ping another node using its specific address.  Capture the entire output of 
the three sessions using, for example, the script command. Make sure the 
debugging level is FISHNET_DEBUG_ALL (the default) so that we can see what 
packets are being sent and received. Mark up the printout to tell us what is going 
on. 

2. Use your IPAQ to ping our fishnet node running in 324 (the Systems’ Lab) 
directly, by using its specific address. You just need to get within radio range and 
discover its address. You can identify our node as the one sending periodic pings 
to neighboring nodes with packet contents “Fishnet is alive”. 

3. Use the turnin program on the Linux servers to electronically submit one or 
more C files containing the source code of your solution. In this case, the main 
file should be hw1.c. You must do this before class on the day that it is due. The 
code you send should be suitable for us to manipulate automatically for grading 
checks.  (In particular, it should compile using the makefile we provided.) 

4. In class on the due date, hand in one stapled paper write up, with both partners’ 
names on it, containing: 

a. A printout of the source code you submitted electronically.  
b. A printout of any output we have asked you to capture.  
c. Short answers to the discussion questions. 

—END— 


