CSE/EE 461 Autumn 2002

Introduction to Computer Communication Networks

David Wetherall djw@cs.washington.edu

This Lecture

- 1. Administrative stuff
- 2. Introduction to Networks
- 3. Statistical multiplexing

djw // CSE/EE 461, Autumn 2002

1. Administrative Stuff

- Everything you need is on the course web page
 - www.cs.washington.edu/education/course/461/02au
- Your TODO list:
 - Join the mailing list <u>cse461@cs.washington.edu</u>
 - Gain access to the CSE Labs (form for non-majors)
 - Get Computer Networks by Peterson and Davie
 - Start on Fishnet assignment 1

djw // CSE/EE 461, Autumn 2002

L1.3

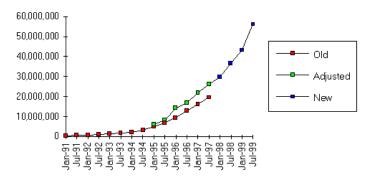
2. The networks we study

- "Network" is an overloaded word:
 - Economic networks, regulatory networks, ...
 - Telephone, Cable TV, Bank tellers, computer clusters
- We are interested in networks that are:
 - Distributed
 - Large scale
 - Heterogeneous

djw // CSE/EE 461, Autumn 2002

The meaning of "Distributed"

- There are distributed and parallel networks:
 - Cash machines versus a parallel computer
 - Both support concurrent computation
- What is the essential difference?
 - Tolerance of failed components
 - Decentralized operation


"A distributed system is a system in which I can't do my work because some computer has failed that I've never even heard of." – Lamport

djw // CSE/EE 461, Autumn 2002

L1.5

The meaning of "Large-scale"

Internet Domain Survey Host Count

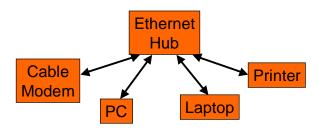
Source: Internet Software Consortium (http://www.isc.org/)

djw // CSE/EE 461, Autumn 2002

The meaning of "Heterogeneous"

- Telephone network
 - Designed for telephone calls
- Internet
 - Web, email, Quake, e-commerce, audio/video, ...
 - But evolution was at work: Web/email a "surprise"
- Computer networks
 - Carry digital information and support a rich variety of distributed applications

djw // CSE/EE 461, Autumn 2002

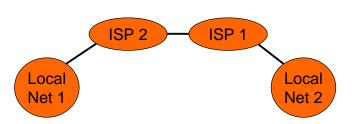

L1.7

Model of a Network

- Links carry information (bits)
 - Wire, wireless, fiber optic, smoke signals ...
 - May be point-to-point or broadcast
- <u>Switches</u> move bits between links
 - Routers, gateways, bridges, CATV headend, PABXs, ...
- Hosts are the communication endpoints
 - PC, PDA, cell phone, tank, toaster, ...
- Much other terminology: channels, nodes, intermediate systems, end systems, and much more.

djw // CSE/EE 461, Autumn 2002

Example – Local Area Network



- Your home network
 - Ethernet is a broadcast-capable multi-access LAN

djw // CSE/EE 461, Autumn 2002

L1.9

Example – An Internetwork

- Internetwork is a network of networks
- The Internet is a global internetwork in which all participants speak a common language
 - IP, the Internet Protocol

djw // CSE/EE 461, Autumn 2002

Goal of this Course

- For you to understand how to design and build *large, distributed computer* networks.
 - Fundamental problems in building networks
 - Design principles of proven value
 - Common implementation technologies
- This is a systems course, not queuing theory, signals, or hardware design.
- We focus on networks, rather than applications or services that run on top of them (distributed systems).

djw // CSE/EE 461, Autumn 2002

L1.11

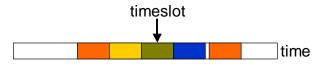
3. Statistical Multiplexing

- · Networks are shared among users
 - This is an important benefit of building them
 - Fundamental design issues concern effective sharing of distributed resources (effective = cost, control, secure, reliable, ...)
- Problem: How to multiplex (share) a resource amongst multiple users, especially sharing a link?
- Well, we could statically partition the link:
 - Frequency Division Multiplexing (FDM)
 - (Synchronous) Time Division Multiplexing (TDM, STDM)

djw // CSE/EE 461, Autumn 2002

Frequency Division Multiplexing

- Simultaneous transmission in different frequency bands
 - Analog: Radio/TV, AMPS cell phones (800MHz)
 - Also called Wavelength DMA (WDMA) for fiber


"Speaking at different pitches"

djw // CSE/EE 461, Autumn 2002

L1.13

Time Division Multiplexing

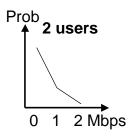
- Timeslice given frequency band between users
 - Digital: used extensively inside the telephone network
 - T1 (1.5Mbps) is 24 x 8 bits/125us; also E1 (2Mbps, 32 slots)

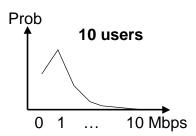
"Speaking at different times"

• Advantage: lower delay; Disadvantage: synchronization

djw // CSE/EE 461, Autumn 2002

Statistical Multiplexing


- Static partitioning schemes are not suited to data communications because peak rate >> average rate.
- If we share on demand we can support more users
 - Based on the statistics of their transmissions
 - Occasionally we might be oversubscribed
 - This is called statistical multiplexing
- Statistical multiplexing is heavily used in data networks


djw // CSE/EE 461, Autumn 2002

L1.15

Example

- One user sends at 1 Mbps and is idle 90% of the time.
 - 10 Mbps channel; 10 users if statically allocated

• What are the likely loads if we share on demand?

djw // CSE/EE 461, Autumn 2002

Example continued

- For 10 users, Prob(need 10 Mbps) = 10^{-10}
- Not likely! So keep adding users ...
- For 35 users, Prob(>10 active users) = 0.17%, which is acceptably low
- We can support three times as many users!
- But: there is an important caveat here ...

djw // CSE/EE 461, Autumn 2002

L1.17

Key Concepts

- Networks are comprised of links, switches and hosts
- Networks are used to share distributed resources
 - Key problems revolve around effective resource sharing
- Statistical multiplexing
 - It's well-suited to data communications (bursty traffic)

djw // CSE/EE 461, Autumn 2002