CSE/EE 461 - Lecture 9

Distance Vector Routing

David Wetherall
djw@cs.washington.edu

Last Time

- Introduction to the Network layer
- Internetworks
- Datagram and virtual circuit services
- Internet Protocol (IP) packet format
- The Network layer
- Provides end-to-end data delivery between networks

Application
Presentation
Session
Transport
Network
Data Link
Physical

This Time

- Focus
- How do we calculate routes for packets?
- Routing is a network layer function
- Routing Algorithms
- Distance Vector routing (RIP)

Application
Presentation
Session
Transport
Network
Data Link
Physical

Forwarding and Routing

- Forwarding is the process that each router goes through for every packet to send it on its way
- Involves local decisions
- Routing is the process that all routers go through to calculate the routing tables
- Involves global decisions

What's in a Routing Table?

- The routing table at A , for example, lists at a minimum the next hops for the different destinations

Dest	Next Hop
B	B
C	C
D	C
E	E
F	E
G	F

Kinds of Routing Schemes

- Many routing schemes have been proposed/explored!
- Distributed or centralized
- Hop-by-hop or source-based
- Deterministic or stochastic
- Single or multi-path
- Static or dynamic route selection
- Internet is to the left J

Routing Questions

- How to choose best path?
- Defining "best" is slippery
- How to scale to millions of users?
- Minimize control messages and routing table size
- How to adapt to failures or changes?
- Node and link failures, plus message loss
- We will use distributed algorithms

Some Pitfalls

- Using global knowledge is challenging
- Hard to collect
- Can be out-of-date
- Needs to summarize in a locally-relevant way
- Inconsistencies in local/global knowledge can cause
- Loops (black holes)
- Oscillations, esp. when adapting to load

Network as a Graph

- Routing is essentially a problem in graph theory

Distance Vector Routing

- Assume:
- Each router knows only address/cost of neighbors
- Goal:
- Calculate routing table of next hop information for each destination at each router
- Idea:
- Tell neighbors about learned distances to all destinations

DV Algorithm

- Each router maintains a vector of costs to all destinations as well as routing table
- Initialize neighbors with known cost, others with infinity
- Periodically send copy of distance vector to neighbors
- On reception of a vector, if neighbors path to a destination plus neighbor cost is better, then switch to better path
- update cost in vector and next hop in routing table
- Assuming no changes, will converge to shortest paths
- But what happens if there are changes?

DV Example - Initial Table at A

Dest	Cost	Next
B	1	B
C	1	C
D	∞	-
E	1	E
F	1	F
G	∞	-

DV Example - Final Table at A

- Reached in a single iteration ... simple example

Dest	Cost	Next
B	1	B
C	1	C
D	2	C
E	1	E
F	1	F
G	2	F

What if there are changes?

- One scenario: Suppose link between F and G fails

1. F notices failure, sets its cost to G to infinity and tells A
2. A sets its cost to G to infinity too, since it learned it from F
3. A learns route from C with cost 2 and adopts it

Dest	Cost	Next
B	1	B
C	1	C
D	2	C
E	1	E
F	1	F
G	3	C

Count To Infinity Problem

- Simple example
- Costs in nodes are to reach Internet

- Now link between B and Internet fails ...

Count To Infinity Problem

- B hears of a route to the Internet via A with cost 2
- So B switches to the "better" (but wrong!) route

Count To Infinity Problem

- A hears from B and increases its cost

Count To Infinity Problem

- B hears from A and (surprise) increases its cost
- Cycle continues and we "count to infinity"

- Packets caught in the crossfire loop between A and B

Split Horizon

- Solves trivial count-to-infinity problem
- Router never advertises the cost of a destination back to to its next hop - that's where it learned it from!
- Poison reverse: go even further - advertise back infinity
- However, DV protocols still subject to the same problem with more complicated topologies
- Many enhancements suggested

Routing Information Protocol (RIP)

- DV protocol with hop count as metric
- Infinity value is 16 hops; limits network size
- Includes split horizon with poison reverse
- Routers send vectors every 30 seconds
- With triggered updates for link failures
- Time-out in 180 seconds to detect failures
- RIPv1 specified in RFC1058
- www.ietf.org/rfc/rfc1058.txt
- RIPv2 (adds authentication etc.) in RFC1388
- www.ietf.org/rfc/rfc1388.txt

Key Concepts

- Routing is a global process, forwarding is local one
- The Distance Vector algorithm and RIP
- Simple and distributed exchange of shortest paths.
- Weak at adapting to changes (loops, count to infinity)

