
1

CSE/EE 461 � Module 12

TCP End-to-End

CSE/EE 461, Autumn 2006 M11.2

This Time

• End-to-end considerations for TCP
– How is connect() different from send(SYN)?
– What does receiver do?
– What does sender do?

• When should data be sent?
• When should it be resent?
• When should it conclude connectivity

has been lost?
Physical

Data Link
Network

TCP
Session

Presentation
Application

2

CSE/EE 461, Autumn 2006 M11.3

connect() vs. send(SYN)

• Q: Is connect() the same thing as send(syn) (if the
interface allowed the latter)?

A: No. (How are they different?)

App

TCP

App

TCP

CSE/EE 461, Autumn 2006 M11.4

Concurrency and blocking

• Protocol implementation involves a lot of concurrency
– E.g., (S1) sending app thread adds to send buffer; (S2) sending

TCP thread removes from buffer and sends; (R1) receving TCP
thread puts in buffer; (R2) receiving app reads from buffer

• Whether or not the app thread is blocked is an
important part of the semantics
– Why should app thread block on connect()?
– Why shouldn’t it block on send()?

• Why should it block on send()?
– Must receive() be blocking?
– Must close() be blocking?

3

CSE/EE 461, Autumn 2006 M11.5

Socket Semantics vs. Application
Architecture

• The application knows best what semantics it needs
– Suppose your application establishes a data connection and a control connection

to some peer
– Can’t do a read() from either one without ignoring the other

• One way to get around blocking semantics at lower level: spawn more
threads, and synchronize as necessary at the user level

• Problem: performance
• “Solution”: Most interfaces provide some form of non-blocking

mechanism
– Usually you can:

• Ask if some operation would block or not (poll)
• Wait for any of a number of distinct events to happen (select)

• A half-way measure: often you can specify a timeout for how long the
thread should block (e.g., receive(250))

CSE/EE 461, Autumn 2006 M11.6

What does the receiver do?

App

TCP

App

TCP
Seqno = s

1. Under what conditons should the receiver send
back an ACK at all?

2. When it does, what should the ACK seqno be?

4

CSE/EE 461, Autumn 2006 M11.7

What should the receiver do?

• General philosophy:
– keep receiver as simple as possible
– ACKs are the primary feedback the sender has to work with

• With that in mind:
– Don’t ACK ACK’s. (What happens if you do?)
– Do ACK everything else.

• Receiver must ACK already seen data…

• Many possible choices for what ACK should send back
– TCP: seqno of first byte not yet received

• Can TCP send a segment with no data bytes?
– What should happen?

CSE/EE 461, Autumn 2006 M11.8

What does the sender do?

App

TCP

App

TCP

1. Should it send as soon as possible?
� Why might it be a good idea to wait?

2. When it sends, how long should the retry timeout be?
� Problem with too short? too long?

3. When should it give up?

5

CSE/EE 461, Autumn 2006 M11.9

1. Send as soon as possible?

• “Silly window” problem
– Reminder: Effective Window =

Receiver advertised window –
(LastByteSent – LastByteAcked)

• Suppose the sender transmits a small frame for some reason.
• The ACK for that frame opens the effective window by its size
• The sender sends an equally small segment
• Etc…

• Want to avoid this!
• Either don’t send small segments, or
• Don’t open window by a small amount

CSE/EE 461, Autumn 2006 M11.10

1. Send as soon as possible?

• Possible receiver side approaches:
– Could use a timeout at receiver

• Send an ACK at most once per timeout?
– Simpler: if window goes to zero, don’t advertise an open

window until you have an MSS (maximum segment size)
available

• Possible sender side approaches:
– Could use a sender timeout
– Could use a Nagle’s Algorithm (self-clocking)

6

CSE/EE 461, Autumn 2006 M11.11

Nagle�s Algorithm

send() {

if both available data and eff window ≥ MSS {

send MSS bytes

} else if lastByteSent – lastByteAcked > 0 {

// don’t send

} else {

send min(available data, eff window) now

}

}

CSE/EE 461, Autumn 2006 M11.12

2. Deciding When to Retransmit

• How do you know when a packet has been lost?

do {
send(p);
wait(t);

} while (!p.acked)

• How long should the timer t be?
– Too big: inefficient (large delays ⇒ poor use of bandwidth)
– Too small: may retransmit unnecessarily (causing extra traffic)
– A good retransmission timer is important for good performance

• Right timer is based on the round trip time (RTT)
– Which varies greatly in the wide area (path length and queuing)

7

CSE/EE 461, Autumn 2006 M11.13

2. Setting the Retransmission Timeout

• Boils down to estimating RTT
• The straightforward approach:

– for each packet, note time sent and time ACK received (RTT sample)
– compute RTT samples and average recent samples for timeout

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)
0 g 1

– this is an exponentially-weighted moving average (low pass filter) that
smoothes the samples with a gain of g

• big g can be jerky, but adapts quickly to change
• small g can be smooth, but slow to respond
• typically, g = .1 or .2 ⇒ stability is more important than precision

– (lousy estimate right now does more damage than so-so estimate right now,
followed by better one a little later)

– (Why not EstimatedRTT = (Sum of SampleRTT’s) / N?)

CSE/EE 461, Autumn 2006 M11.14

Original TCP (RFC793) retransmission
timeout algorithm

• Use EWMA to estimate RTT:

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)
0 g 1, usually g = .1 or .2

• Conservatively set timeout to small multiple (2x) of the estimate

Retransmission Timeout = EstimatedRTT + EstimatedRTT

• Why the ‘+ EstimatedRTT’?
– Better to wait “too long” than not long enough.

8

CSE/EE 461, Autumn 2006 M11.15

Jacobson/Karels Algorithm

• Replace “+ EstimatedRTT” with measured variation in RTT

1. Compute a sample deviation statistic
– DevRTT = (1-b) * DevRTT + b * |SampledRTT - EstimatedRTT|

• typically, b = .25

2. Set timeout interval as:
– retransmission timeout = EstimatedRTT + k * DevRTT

• k is generally set to 4

• timeout =~ EstimatedRTT when variance is low (estimate is good)
– timeout quickly moves away from EstimatedRTT (4x!) when the

variance is high (estimate is bad)

CSE/EE 461, Autumn 2006 M11.16

Karn/Partridge Algorithm

• Problem: RTT for retransmitted packets ambiguous

• Solution: Don’t measure RTT for retransmitted packets
– Problem: RTT not updated when timeouts occurring
– Approach: use backoff on timeout until an xmit succeeds with retrransmission

Sender Receiver

Original transmission

ACKS
am

pl
eR

TT Retransmission

Sender Receiver

Original transmission

ACK

S
am

pl
eR

TT

Retransmission

9

CSE/EE 461, Autumn 2006 M11.17

3. When do we give up?
RFC 1122 (Requirements for Internet Hosts)

The following procedure MUST be used to handle excessive retransmissions of data
segments:

� There are two thresholds R1 and R2 measuring the amount of retransmission that has occurred for
the same segment.

� When the number of transmissions of the same segment reaches or exceeds threshold R1, pass
negative advice to the IP layer, to trigger dead-gateway diagnosis.

� When the number of transmissions of the same segment reaches a threshold R2 greater than R1,
close the connection.

� An application MUST be able to set the value for R2 for a particular connection. TCP SHOULD
inform the application of the delivery problem (unless such information has been disabled by the
application; see Section 4.2.4.1), when R1 is reached and before R2.

� The value of R1 SHOULD correspond to at least 3 retransmissions, at the current RTO. The value
of R2 SHOULD correspond to at least 100 seconds.

