
1

CSE/EE 461 – Module 11

Connections

CSE/EE 461, Autumn 2007 M11.2

This Time

• More on the Transport Layer

• Focus
– How do we connect processes?

• Topics
– Naming processes

– Connection setup / teardown

– Flow control

Physical

Data Link

Network

Transport

Session

Presentation

Application

2

CSE/EE 461, Autumn 2007 M11.3

Naming Processes/Services

• Process here is an abstract term for your Web browser (HTTP),
Email servers (SMTP), hostname translation (DNS), RealAudio
player (RTSP), etc.

• How do we identify for remote communication?

– Process id or memory address are OS-specific and transient

• So TCP and UDP use Ports

– 16-bit integers representing mailboxes that processes “rent”

• typically from OS

– Identify endpoint uniquely as (IP address, protocol, port)

• OS converts into process-specific channel, like “socket”

CSE/EE 461, Autumn 2007 M11.4

Processes as Endpoints

3

CSE/EE 461, Autumn 2007 M11.5

Picking Port Numbers

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?

– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services

– Ports below 1024 reserved for “well-known” services

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished

CSE/EE 461, Autumn 2007 M11.6

SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

• Provides message delivery between processes
– Source port filled in by OS as message is sent

– Destination port identifies UDP delivery queue at endpoint

4

CSE/EE 461, Autumn 2007 M11.7

Application
process

Application
process

Application
process

Packets arrive

Ports

Message

Queues

DeMux on

Port #

UDP Delivery

Kernel

boundary

CSE/EE 461, Autumn 2007 M11.8

UDP Checksum

• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery

– So it covers data, UDP header, and IP pseudoheader

SrcPort DstPort

Checksum Length

Data

0 16 31

5

CSE/EE 461, Autumn 2007 M11.9

Transmission Control Protocol (TCP)

• Reliable bi-directional bytestream between processes
– Message boundaries are not preserved

• Connections
– Conversation between endpoints with beginning and end

• Flow control
– Prevents sender from over-running receiver buffers

• Congestion control
– Prevents sender from over-running network buffers

CSE/EE 461, Autumn 2007 M11.10

TCP Delivery

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

6

CSE/EE 461, Autumn 2007 M11.11

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Ports plus IP addresses identify a connection

CSE/EE 461, Autumn 2007 M11.12

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Sequence, Ack numbers used for the sliding window

7

CSE/EE 461, Autumn 2007 M11.13

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Flags may be URG, ACK, PUSH, RST, SYN, FIN

CSE/EE 461, Autumn 2007 M11.14

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Advertised window is used for flow control

8

CSE/EE 461, Autumn 2007 M11.15

TCP Connection Establishment

• Both connecting and closing are (slightly) more complicated than
you might expect

• That they can work is reasonably straightforward

• Harder is what to do when things go wrong

– TCP SYN+ACK attack

• Close looks a bit complicated because both sides have to close to be
done

– Conceptually, there are two one-way connections

– Don’t want to hang around forever if other end crashes

CSE/EE 461, Autumn 2007 M11.16

TCP Connection Establishment

• Both sender and receiver must be ready before we start
to transfer the data
– Sender and receiver need to agree on a set of parameters

– e.g., the Maximum Segment Size (MSS)

• This is “signaling”
– It sets up state at the endpoints

– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used

9

CSE/EE 461, Autumn 2007 M11.17

Three-Way Handshake

• Opens both directions for transfer

Active opener
(client)

Passive listener
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

CSE/EE 461, Autumn 2007 M11.18

Some Comments

• We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

• But with random ISN it actually “proves” that two hosts
can communicate
– Weak form of authentication

10

CSE/EE 461, Autumn 2007 M11.19

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN

SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACKAC
K + FIN

/AC
K Timeout after two

segment lifetimes
FIN/ACK

ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open /SYN

TCP State Transitions

CSE/EE 461, Autumn 2007 M11.20

Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

11

CSE/EE 461, Autumn 2007 M11.21

Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently

CSE/EE 461, Autumn 2007 M11.22

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK

FIN_WAIT_2

TIME_WAIT

CLOSED
CLOSED

…

12

CSE/EE 461, Autumn 2007 M11.23

The TIME_WAIT State

• We wait 2MSL (two times the maximum segment
lifetime of 60 seconds) before completing the close

• Why?

– ACK might have been lost and so FIN will be resent

– Could interfere with a subsequent connection

CSE/EE 461, Autumn 2007 M11.24

Berkeley Sockets interface

• Networking protocols implemented in OS
– OS must expose a programming API to applications

– most OSs use the “socket” interface

– originally provided by BSD 4.1c in ~1982.

• Principle abstraction is a “socket”
– a point at which an application attaches to the network

– defines operations for creating connections, attaching to
network, sending and receiving data, closing connections

13

CSE/EE 461, Autumn 2007 M11.25

TCP (connection-oriented)

Server

Socket()

Bind()

Client

Socket()

Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until

connect

Process

request

Connection Establishmt.

Data (request)

Data (reply)

CSE/EE 461, Autumn 2007 M11.26

UDP (connectionless)

Server

Socket()

Bind()
Client

Socket()

Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until

Data from

client

Process

request

Data (request)

Data (reply)

14

CSE/EE 461, Autumn 2007 M11.27

Using Sockets: UDP

• import java.net.*;

• UDP sockets:

– new DatagramSocket(); // binds to ephemeral port number

– new DatagramSocket(port); // tries to bind to ‘port’

• DatagramPacket

– Unit of transfer between application and networking software

– new DatagramPacket(byte[] buf, int len);

– new DatagramPacket(byte[] buf, int len, InetAddress addr, int port);

• Sending data:

– Construct a DatagramPacket

– Set its data field, and its address components

– myDatagramSocket.send(myDatagramPacket)

CSE/EE 461, Autumn 2007 M11.28

Java / UDP

• Java also has an interface supporting connect(SocketAddr addr), but it’s a
layer above UDP

– Filters incoming packets not from addr

– Filters outgoing packets not from addr

• Performance / correctness issue:

– Is a copy of the data portion of a DatagramPacket made when send() is invoked,
or is a reference to the byte[] buf kept?

• Blocking vs. non-blocking IO

– Non-blocking options

1. import java.net.*;

– DatagramSocket.setSOTimeout(int timeout);

2. import java.nio.*;

– More general (complicated) support

15

CSE/EE 461, Autumn 2007 M11.29

Using Sockets: TCP

• The TCP distinction between passive and active open is embedded in the
(typical) socket interfaces

– There are two kinds of sockets:

• Socket

• ServerSocket

• Server starts, creates a server socket, binds it to a local port, and listens for a
client to connect

• Client starts, creates a socket on an ephemeral port, and connects to the
server socket

• As a result of the connection, the server socket creates a new socket to return
to the application

– Provides a handy way to identify/name a single flow in the application code

CSE/EE 461, Autumn 2007 M11.30

TCP Server-side: Java

• Create:
– ServerSocket ss = new ServerSocket();

– ServerSocket ss = new ServerSocket(port);

• Listen:
– Socket s = ss.accept();

16

CSE/EE 461, Autumn 2007 M11.31

TCP Client side: Java

• Create:
– Socket s = new Socket();

• Connect:
– s.connect(serverAddress);

– S.connect(serverAddress, timeout);

• Use:
– It’s Java, the sockets support streams, the mind boggles
– BufferedReader in = new BufferedReader(new InputStreamReader(s.getInputStream()));

• in.readLine();

– PrintWriter out = new PrintWriter(s.getOutputStream(), true);
• Out.print(data);

– OutStream outStream = s.getOutputStream();

• outStream.write(buf, 0, n); // byte[] buf for n bytes starting at offset 0

CSE/EE 461, Autumn 2007 M11.32

Key Concepts

• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• Connection setup and teardown complicated by the
effects of the network on messages
– TCP uses a three-way handshake to set up a connection

– TCP uses a symmetric disconnect

