
1

CSE/EE 461 – Module 15

Security

CSE/EE 461, Autumn 2007 M15.2

This Time

• Network security

• Focus

– How do we secure distributed systems?

• Topics

– Privacy, integrity, authenticity, timeliness

– Cryptography

– Practical security

Physical

Data Link

Network

Transport

Session

Presentation

Application

2

CSE/EE 461, Autumn 2007 M15.3

Preliminaries: End-Host Security

• Traditional security concepts:
– Integrity

• My files shouldn’t be modifiable by an unauthorized user

– Privacy

• My files shouldn’t be readable by an unauthorized user

• Traditional security mechanisms:
– Authentication

• Who are you?

– Authorization

• What are you allowed to do?

CSE/EE 461, Autumn 2007 M15.4

Preliminaries (cont.)

• “Trusted computing base”

– Components of the system that you believe are respecting the security policy but that are
not verified as doing so

• The user trusts the operating system

– E.g., won’t leak your files to unauthorized users, won’t spuriously delete/modify them

• User trusts applications

– Emacs isn’t mailing your file to its authors

• User trusts the hardware

– Is your keyboard trustworthy?

– Is an ATM trustworthy?

• Does the OS trust users?

– Mandatory access control

3

CSE/EE 461, Autumn 2007 M15.5

Preliminaries: Network Security

• Most of the technologies in lower protocol layers were developed pre-
Internet

• Pre-Internet:

– There weren’t many network services (telnet, mail, ftp, a few others)

– There weren’t many machines on networks

• Many local networks, but not very interconnected

– “End-to-end security” made sense

• Trusted OSes running trusted applications run by trusted users
– At the very least, you could probably track down a malicious user

• Result: no security mechanisms were built into protocols themselves

– E.g., mail spoofing was trivial

CSE/EE 461, Autumn 2007 M15.6

Preliminaries: Post-Internet

• Really an entirely new situation

– Servers want “anonymous” users

– Users want to talk with unverified servers

– Users want to run unverified code

• Possible approaches:

– Verification of identity + trust

• X.509 certificates

– Enforcement

• Java security model

4

CSE/EE 461, Autumn 2007 M15.7

Network Security

• What properties would we like the network to offer?

– Privacy: messages can’t be eavesdropped

– Integrity: messages can’t be tampered with

– Authenticity: we can verify who created the message

– Timeliness: we can verify that the packet was sent not too long ago

– Availability: I can send and receive the packets I want

– Non-repudiation: you can’t claim you didn’t say something you did

– Anonymity: not only can’t you tell what the content of my conversation is, you
can’t even tell who I’m talking with

• There are other properties we would like from the distributed services that
run on top, as well

– E.g., if I send you my medical records, you can’t send them to anyone else

CSE/EE 461, Autumn 2007 M15.8

Achieving Security

• It’s not about making security violations impossible, it’s about making
them too expensive to be worth it to the attacker

– Example: There’s a simple method to break passwords: try them all

• Security is a negative goal

– Proof that something can’t be done within some cost model is often followed
by demonstration that it can be done by stepping outside the model

• Example: dictionary attacks
(Goal isn’t “break into account gwb,” it’s “break into any account”)

• There is a long-standing debate about the roles of prevention and
retaliation

– Steel plates over your doors and windows or deadbolts and the legal system?

5

CSE/EE 461, Autumn 2007 M15.9

Attack Models

Alice Bob

• eavesdropper

• man-in-the-middle
• replay attack

• spoof

• phishing

• …

CSE/EE 461, Autumn 2007 M15.10

Part I: Privacy/Secrecy

• Main goal: prevent an eavesdropper from understanding what

is being sent

6

CSE/EE 461, Autumn 2007 M15.11

Basic Tool: Cryptography

• Cryptography (encryption) directly addresses the

eavesdropper problem

• It turns out it can also be used to address some of the other

problems

– E.g., authenticity

• Encryption is a building block

– A security protocol is needed to achieve some more complex goal

CSE/EE 461, Autumn 2007 M15.12

Basic Encryption for Privacy

• Cryptographer chooses functions E, D and keys KE, KD

– Mathematical basis

• Cryptanalyst try to “break” the system

– Depends on what is known: E and D, M and C?

Sender

Plaintext (M)

Encrypt

E(M,KE)

Ciphertext (C)

Receiver

Plaintext (M)

Decrypt

D(C, KD)

7

CSE/EE 461, Autumn 2007 M15.13

Secret Key Functions (DES, IDEA)

• Also called “shared secret”

• Single key (symmetric) is shared between parties
– Used both for encryption and decryption

• Pro’s:
– Fast; hard to break given just ciphertext

• Con’s:
– key distribution problem

• Suppose you want to create an account at youTube.com?

• The key distribution problem is crippling
- Every client must share a (distinct!) secret with every server

Plaintext

Encrypt with

secret key

Ciphertext

Plaintext

Decrypt with

secret key

CSE/EE 461, Autumn 2007 M15.14

Public Key Functions (RSA)

• Public key can be published; private is a secret

– Still have a key distribution problem, though…

Plaintext

Encrypt with

public key

Ciphertext

Plaintext

Decrypt with

private key

8

CSE/EE 461, Autumn 2007 M15.15

Properties of Public Key
Encryption

• Let K1 be the private key, and K* be the public key

• D(E(M,K*), K1) = M = D(E(M,K1), K*)

• Implications

– Anonymous client can send private message to server knowing only K*

– Server can prove authenticity by encrypting with K1

CSE/EE 461, Autumn 2007 M15.16

Part II: Integrity

• Main goal: detect that a message has been altered

• Main ideas:

– Redundancy: same idea as checksum

M

Authenticator

Hash Fn. Value

=?

Hash

(For now, assume you somehow

know the authenticator.)

What’s the

problem?

9

CSE/EE 461, Autumn 2007 M15.17

Integrity

M

Authenticator

Hash Fn. Value Hash

MAttack

CSE/EE 461, Autumn 2007 M15.18

Cryptographic Hash

• Basically:

– A hash function (maps arbitrary sized data to a fixed number of bits)

– Given message M, is cheap to compute

– Give a hash value, it’s hard to find data that produces that value

• Ideally, a change to any one bit of the message flips each bit of the

hash value with probability 0.5

• Result:

– Even if the attacker knows the authenticator value, can’t produce

bogus data that matches it

10

CSE/EE 461, Autumn 2007 M15.19

Message Digests (MD5, SHA)

• Act as a cryptographic checksum or hash

– Typically small compared to message (MD5 128 bits)

– “One-way”: infeasible to find two messages with same digest

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Transform

CSE/EE 461, Autumn 2007 M15.20

Example: Secure File System
(SFS)

• Goal: use untrusted nodes on web (e.g., your machines) to host a secure
file system

– Main problem: How does someone fetching a file from you know that you’re
not returning nonsense?

• Main idea: the “names” of files are cryptographic hash values of their
contents

• Directories entries: [string file name, hash value]

• When you fetch a file, you can verify that it’s the one you asked for!

• (How do you verify the root directory…?)

11

CSE/EE 461, Autumn 2007 M15.21

Part III: Authenticity (and
Integrity)

• Q: How can you verify that a message claiming to be from

Alice is actually from Alice?

• A: The message proves that the sender knows something that

only Alice knows.

– Primary example: Alice’s private key

CSE/EE 461, Autumn 2007 M15.22

Basic Idea

Plaintext

Encrypt with

PRIVATE key

Ciphertext

Plaintext

Decrypt with

PUBLIC key

Alice Bob

Is there a problem?

12

CSE/EE 461, Autumn 2007 M15.23

Authenticity + Integrity

Plaintext

checksum

Encrypt with

PRIVATE key

Ciphertext

Decrypt with

PUBLIC key

Alice Bob

Plaintext

checksum

CSE/EE 461, Autumn 2007 M15.24

A Faster Version

• Encryption can be expensive, e.g., RSA measured in Kbps

• To speed up, let’s sign just the checksum instead!

– Check that the encrypted bit is a signature of the checksum

• RSA Digital Signature:

– Use a cryptographic hash

• Why?

checksum

Encrypt with
PRIVATE key

Ciphertext

Decrypt with
PUBLIC key

Alice Bob

checksum

Plaintext

Plaintext

13

CSE/EE 461, Autumn 2007 M15.25

Message Integrity / Authenticity

• Sender:

– computes cryptographic hash of message M

– encrypts the hash with its own private key

– Sends both M and the encrypted hash

• Receiver:

– Accepts M and the encrypted hash

– Applies the sender’s public key to decrypt the hash

– Computes the hash on M and compares it to the decrypted value

CSE/EE 461, Autumn 2007 M15.26

Part IV: Timeliness

• Want to guard against replay attacks

• Why not just send the time with each message?

• General idea: send a ‘nonce’

– Usually a random number chosen from a large space

– Responder must reply with an indication they understood this

value (e.g., by repeating it)

14

CSE/EE 461, Autumn 2007 M15.27

Nonce Example: TCP

Active opener

(client)

Passive listener

(server)

SYN, SequenceNum =
x

SYN + ACK, SequenceNum =
y ,

ACK, Acknowledgment =
y + 1

Acknowledgment =
x + 1

CSE/EE 461, Autumn 2007 M15.28

Part V: Security Protocols

15

CSE/EE 461, Autumn 2007 M15.29

Authentication w/ Shared Secret

• Three-way handshake for mutual authentication

– Client and server share secrets, e.g., login password

Client Server

ClientId, E(x, CHK)

E(y + 1, CHK)

E(SK, SHK)

E(x + 1, SHK), E(y, SHK)

Client authenticates

server here

Server authenticates

client here

Session key

exchanged

x and y are nonces, values used
only once, to avoid replay attacks.

CSE/EE 461, Autumn 2007 M15.30

Via Trusted Third Party
(Kerberos)

16

CSE/EE 461, Autumn 2007 M15.31

Public Key Authentication

CSE/EE 461, Autumn 2007 M15.32

Diffie-Hellman Key Exchange

• Problem: agree on a session key with no prior information

exchanged

17

CSE/EE 461, Autumn 2007 M15.33

ssh

• Encrypted channel

– Diffie-Hellman key exchange (plus negotiated encryption scheme)

• Authentication

– Client has private key on local machine (usually in

~/.ssh/id_rsa) and public key on remote machine (in

~/.ssh/authorized_keys)

– Server sends a challenge for client to sign using private key

– Server verifies challenge using public key

CSE/EE 461, Autumn 2007 M15.34

X.509 Certificates

18

CSE/EE 461, Autumn 2007 M15.35

Security in Context

• A system is only as secure as its weakest link

• Often that weakest link is you!

• Example: You’re a registered user with, say, 25 online services. How

many different passwords do you have?

– Want “single sign-on”

– Need either:

• A client-side password manager, or

• A central, trusted authority a la Kerberos (Microsoft Passport, Google

Checkout)

CSE/EE 461, Autumn 2007 M15.36

Social engineering

• Con person into giving out information

• Phone secretary, say:

– “Hi. I’m your company’s IT administrator. Your boss is currently traveling,

and I can’t reach them. I need their password to verify their account hasn’t

been broken into. This is really urgent.”

• Somebody phones you, and says:

– “Hi. I’m with the Bank of America credit card fraud division. We’ve detected

suspicious activity on your account, and we want to ensure you haven’t

become a victim of identity theft. Before we start, I need to verify your

identity. What is your bank account number? SSN?”

• Often far more effective than technical attack

– requires all people with access to sensitive information to be conscious of

security issues

19

CSE/EE 461, Autumn 2007 M15.37

CSE/EE 461, Autumn 2007 M15.38

20

CSE/EE 461, Autumn 2007 M15.39

CSE/EE 461, Autumn 2007 M15.40

What is Denial of Service?

• Attacker can deny service to legitimate users if they can overwhelm the
system providing the service

– System is full of bugs … just send it packets that trigger them

– System has limited bandwidth, CPU, memory, etc. … just sent it too many
packets to handle

• Big issue in practice and lack of effective solutions

– Today, patch as found (CERT) or build implementation to tolerate DOS

– Tomorrow, design protocols to withstand, possibly network support for
shutting down attack?

• Two broad classes:

– Nasty packets trigger implementation bugs, e.g., Ping of Death

– Packet floods target bandwidth, CPU, memory, e.g., SYN flood

21

CSE/EE 461, Autumn 2007 M15.41

Complication: Spoofed Addresses

• Why reveal your real address? Instead, “spoof” it.
– Can implicate others and appear to be many hosts

• Solution?
– Ingress filtering (ISPs check validity of source addresses) helps, but

has poor incentive patterns and is not a complete solution

• Opportunity: “backscatter analysis”
– host responds to spoofed packet, sends response packet to essentially

random IP

– if you have a large number of unused IPs, just listen and you’ll hear the
backscatter -- can measure DOS attacks!

CSE/EE 461, Autumn 2007 M15.42

Distributed DOS (DDOS)

• Use automated tools to set up a network of zombies

– Trin00, TFN, mstream, Stacheldraht, …

22

CSE/EE 461, Autumn 2007 M15.43

Operation Bot Roast

CSE/EE 461, Autumn 2007 M15.44

Lessons

• Encryption is powerful tool

– strong mathematical properties

– used to provide integrity, authenticity, privacy

– must be used correctly

• Many other security issues in practice

– non-mathematical, “best practice” based

– easy to get wrong

• In the end, people are the weak link

– social engineering

