
1

CSE/EE 461: Introduction to Computer

Communications Networks

Autumn 2007

Module 3

Direct Link Networks – Part A

John Zahorjan

zahorjan@cs.washington.edu

534 Allen Center

10/3/07 CSE/EE 461 07au 2

This Module's Topics

Overview of Computer Networking

1. Two slides from last time

2. Overview – Scope of today’s discussion

3. Encoding / Framing / Error Detection

4. Reliable Transmission

2

10/3/07 CSE/EE 461 07au

OSI “Seven Layer” Reference Model

Their functions:

• Up to the application

• Encode/decode messages

• Manage connections

• Reliability, congestion control

• Routing

• Framing, multiple access

• Symbol coding, modulationPhysical

Link

Network

Transport

Session

Presentation

Application

10/3/07 CSE/EE 461 07au

Internet Protocol Framework

Network

Link

Transport

Application

IP

Many

(Ethernet, …)

TCP / UDP

Many

(HTTP,SMTP)

Model Protocols The “narrow waist”

3

10/3/07 CSE/EE 461 07au

Direct Link Networks

Host A Host B Point-to-point

“Direct link” ⇒ no switching/routing

Broadcast / shared

10/3/07 CSE/EE 461 07au

Direct Link Networks

Host A Host B
…010010000011011110010100010

Host A Host B

Encoding

Framing
…010010000011011110010100010

Host A Host B
…010010000011111110010100010

Error Detection

4

10/3/07 CSE/EE 461 07au

Physical

Link

Network

Transport

Session

Presentation

Application

Relationship to the Protocol Stack

• Up to the application

• Encode/decode messages

• Manage connections

• Reliability, congestion control

• Routing

• Framing, multiple access

• Symbol coding, modulation

Encoding

Framing

Error Detection

Remember, this is an idealization of what actually goes on

(and the organization of the book is explicitly non-layerist).

10/3/07 CSE/EE 461 07au

Relationship to the hardware

Host A Host B
…010010000011011110010100010

Network inteface cards (NICs) (also called “network adaptors”)

e.g., Ethernet card or 802.11g card

5

10/3/07 CSE/EE 461 07au

Link Properties

• Bandwidth

– How many bits per second can be put onto the link.

– (That’s also the rate at which they come out, assuming there are any there to come
out.)

• Latency (aka propogation delay or just delay)

– How long it takes a bit to make it from the sender to the receiver

0 1 0 0 1 1 0
Bandwidth (bps)

Latency (sec)

0 1 1 0
010

A lower bandwidth link picture

10/3/07 CSE/EE 461 07au

Bandwidth-Delay Product

• Propogation delay is
L = link distance (m) / propogation speed (m/sec)

• Bandwidth is
B = k (bits/sec)

• Bandwidth-Delay Product is the number of bits that
would be in flight if the sender were constantly
sending

B*D ((bits/sec) * (m / (m/sec)) = bits)

• Increasing bandwidth increases the bandwidth-delay product.

6

10/3/07 CSE/EE 461 07au

Encoding

• Modulate something – amplitude, frequency, phase

• A key issue is clocking
– Higher transmission rates require better synch

• Some example encodings (thanks, wikipedia):

NRZ
(RS-232)

NRZI
(CDs, USB, Fast Ethernet)

Host A Host B
…010010000011011110010100010

10/3/07 CSE/EE 461 07au

Encoding: Self-Clocking

• Receiver can derive clock from the data signal

• Example 1:

• Example 2: Use NRZI, but make sure there are transitions

– 4B/5B multi-level transition (MLT)

• 100Mbps Ethernet, with 3 levels of signal

– 8B/10B MLT

• 1000Mbps Ethernet, with 5 levels of signal

– (MLT is used to limit the required signal bandwidth to what can be carried
on cheap, CAT 5 cable (100MHz).)

Manchester
(10Mbps Ethernet)

7

10/3/07 CSE/EE 461 07au

Example 4B/5B Code

Halt00100-NONE-H

ESD #200111-NONE-R

ESD #101101-NONE-T

SSD #210001-NONE-K

SSD #111000-NONE-J

Idle11111-NONE-I

hex data F111011111F

hex data E111001110E

hex data D110111101D

hex data C110101100C

hex data B101111011B

hex data A101101010A

hex data 91001110019

hex data 81001010008

hex data 70111101117

hex data 60111001106

hex data 50101101015

hex data 40101001004

hex data 31010100113

hex data 21010000102

hex data 10100100011

hex data 01111000000

Description5b4bName

(100BASE-TX Ethernet) |

SSD= Start of Stream Delimiter

ESD= End of Stream Delimiter

10/3/07 CSE/EE 461 07au

Separate Clock Distribution
• Self-clocking consumes bandwidth

– Manchester: two transitions per bit

– 4B/5B and 8B/10B: overhead of additional bits

• Alternative: send explicit clock

– SONET (Synchronous Optical NETwork)

• Clock can be carried explicitly from one network element to another

• Nodes can all use clock from GPS

• Various fallbacks

8

10/3/07 CSE/EE 461 07au

Framing

• Need to know where a frame starts
– Special bit sequence marks start of frame

• Need to know where frame ends
– Special bit sequence, or

– Length of frame is transmitted, or

– Fixed length frame

Host A Host B
…010010000011011110010100010

10/3/07 CSE/EE 461 07au

Framing (cont.)

• The generic view

• Because the payload may contain the start or stop sequence,
may have to “stuff” payload at sender, and unstuff at receiver

– Something like putting a quote inside a quoted string in a
programming language

• Suppose start bit sequence is 0x7E.

• Replace 0x7E in payload with 0x7D 0x5E

• Replace 0x7D in payload with 0x7D 0x5D

• At receiver, 0x7D 0x5E replaced with 0x7E

• We’ll see more frame formats when we look at specific link level
protocols in a bit…

Start bit seq Stop bit seqPayload

9

10/3/07 CSE/EE 461 07au

Problem: Transmission Errors

• Noise can flip some of the bits we receive
– We must be able to detect when this occurs!

• Basic approach: add redundant data
– Error detection codes allow errors to be recognized

– Error correction codes allow (some) errors to be repaired too

• Questions we’ll delay for a bit:
– What should happen if an uncorrectable error is detected?

– Which layer(s) should do whatever it is?

Host A Host B
…010010000011111110010100010

10/3/07 CSE/EE 461 07au

Patterns of Errors

• Q: Suppose you expect a bit error rate of about 1 bit
per 1000 sent. What fraction of packets would be
corrupted if they were 1000 bits long (and you could
detect all errors but correct none)?

• A: It depends on the pattern of errors
– Bit errors occur at random

• Packet error rate is about 1 – 0.9991000 = 63%

– Errors occur in bursts, e.g., 100 consecutive bits every
100,000 bits

• Packet error rate ≤ 2%

10

10/3/07 CSE/EE 461 07au

Detection/Correction Codes: Redundancy

• A scheme maps D bits of data into D+R bits – i.e., it uses only
2D distinct bit strings of the 2D+R possible.

• The sender computes the ECC bits based on the data, and
sends them along with the data.

• The receiver takes the data bits it received and computes the
ECC bits for them. It then computes the ECC it computed with
the one it received.
– Detection occurs when what the receiver computed and received

don’t match
• Note: corruption of ECC bits triggers detection

– That is, detection occurs when the D+R total bits are not one of the
2D messages valid using the code

Start bit seq Stop bit seqD data bits R ECC bits

ECC = f(data)

10/3/07 CSE/EE 461 07au

Detection/Correction Codes: Redundancy

• Detection/correction schemes are characterized in
two ways:

– Overhead: ratio of total bits sent to data bits, minus 1

• Example: 1000 data bits + 100 code bits = 10% overhead

– The errors they detect/correct

• E.g., all single-bit errors, all bursts of fewer than 3 bits, etc.

11

10/3/07 CSE/EE 461 07au

The Hamming Distance

• The Hamming distance of a code is the smallest
number of bit differences that turn any one codeword
into another
– e.g, code 000 for 0, 111 for 1, Hamming distance is 3

• For code with distance d+1:
– d bit errors can be detected, e.g, 001, 010, 110, 101, 011

• For code with distance 2d+1:
– d errors can be corrected, e.g., 001 à 000

10/3/07 CSE/EE 461 07au

Specific Schemes

• We’ll briefly touch on the three schemes
mentioned in the book

– They’re organized from least to most
expensive to compute

• Scheme 1: parity

– A single parity bit is associated with each K
bits of the data, for some K. It is set so that
the XOR of the data bits + the parity bit = 0
(for even parity)

• Example: K=8, one parity bit per byte

– Detects all odd numbers of errored bits

• Example: 2-dimensional parity: one parity bit for
each bit in a byte, another for each of the eight
bit positions in 8 consecutive bytes

– Detects all 1-, 2-, and 3- bit errors, plus many >3-
bit errors

0101001 1

1101001 0

1011110 1

0001110 1

0110100 1

1011111 0

1111011 0

2-d parity

example

12

10/3/07 CSE/EE 461 07au

Specific Schemes

• Scheme 2: checksum
– General idea: Sum successive blocks of K-bits of the data,

as though they were integers

– Internet checksum: K=16, use 1’s-complement arithmetic,
take 1’s complement of result as checksum

• Example: data is 01 00 F2 03 F4 F5 F6 F7

– 0100 + F203 = [0] F303

– F303 + F4F5 = [1] E7F8 = E7F9

– E7F9 + F6F7 = [1] DEF0 = DEF1

– Checksum is 1’s complement of DEF1: 210E

– Transmit 01 00 F2 03 F4 F5 F6 F7 21 0E

• Why use 1’s-complement is a bit arcane (e.g., endian-ness of
machine doesn’t matter), and not terribly crucial

– Note: overhead (in bits) of this scheme is independent of the
number of data bits sent

10/3/07 CSE/EE 461 07au

Specific Schemes

• Scheme 3: CRCs (Cyclic Redundancy Check)
– Stronger protection than checksums

• Used widely in practice, e.g., Ethernet CRC-32

• Implemented in hardware (XORs and shifts)

• Based on mathematics of finite fields
– “numbers” correspond to polynomials, use modulo arithmetic

– e.g, interpret 10011010 as x7 + x4 + x3 + x1

• Algorithm: Given n bits of data, generate a k bit check
sequence that gives a combined n + k bits that are
divisible by a chosen divisor C(x)

13

10/3/07 CSE/EE 461 07au

How is C(x) Chosen?

• Mathematical properties:
– All 1-bit errors if non-zero xk and x0 terms

– All 2-bit errors if C(x) has a factor with at least three terms

– Any odd number of errors if C(x) has (x + 1) as a factor

– Any burst error < k bits

• There are standardized polynomials of different
degree that are known to catch many errors
– Ethernet CRC-32: 100000100110000010001110110110111

10/3/07 CSE/EE 461 07au

Reliable Transmission

• Because there may be uncorrectable errors (no matter what
ECC scheme is used), how can the sender be sure that the
receiver got the data?

– The sender must receive an acknowledgement (ACK) from the
sender

Sender Receiver

Frame

ACK

time

Sender now

knows data

was received

What if noACK

is received?

14

10/3/07 CSE/EE 461 07au

Timeouts / Automatic Repeat Request (ARQ)
• If no ACK comes back, the sender must re-send the data (ARQ)

– When is the sender sure that no ACK is coming back?

• Because as a practical matter delays are very difficult to bound, in
some sense it can never be sure

• Sender chooses some reasonable timeout – if the ACK isn’t back in
that much time, it assumes it will never see an ACK, and re-sends

Sender Receiver

Frame

time

Resend

timeout What if original

frame arrived, but

ACK was lost?

10/3/07 CSE/EE 461 07au

Duplicate Detection: Sequence Numbers

• So that the receiver can detect (and discard)
duplicates, distinct frames are given distinct
sequence numbers
– E.g., 0, 1, 2, 3, …

• When a frame is re-sent, it is re-sent with the same
sequence number as the original

• The receiver keeps some information about what
sequence numbers it has seen, and discards arriving
packets that are duplicates

15

10/3/07 CSE/EE 461 07au

Stop-and-Wait Protocol

• Sender doesn’t send next packet until he’s sure
receiver has last packet

• The packet/ACK sequence enables reliability

• Sequence numbers help avoid problem of duplicate
packets

Sender Receiver

Here’s what it looks like

when things are going well

(no transmission errors).

10/3/07 CSE/EE 461 07au

Stop & wait sequence numbers

Sender Receiver

Frame 0

ACK

T
im

e
o
u
t

Frame 0

ACK

T
im

e
o
u
t

The Problem Scenario

• Sequence numbers enable the receiver to discard duplicates

• ACKs must carry sequence number info as well

The Solution

Frame 1

• Stop & wait allows one outstanding frame, requires two

distinct sequence numbers

Sender Receiver

Frame 0

ACK 0

T
im

e
o
u
t

Resend 0

ACK 0

T
im

e
o
u
t

Frame 1

Frame 1

16

10/3/07 CSE/EE 461 07au

Problem with Stop-And-Wait: Performance

• Problem: “keeping the pipe full”
– If the bandwidth-delay product is much larger than a packet

size, the sender will be unable to keep the link busy

• Example
– 1.5Mbps link x 45ms RTT = 67.5Kb (8KB)

– 1KB frames imples 1/8th link utilization

• Solution: allow multiple frames “in flight”

10/3/07 CSE/EE 461 07au

Solution: Allow Multiple Frames in Flight

• This is a form of pipelining

Sender Receiver

T
im

e

…
…

17

10/3/07 CSE/EE 461 07au

Flow Control

• Why can’t we allow the sender to send as fast as it can, timing out and re-
sending each frame as necessary?

• Flow control:

– Receiver needs to buffer data until it can be delivered to higher layers

• If the sender is much faster than the receiver, it will overwhelm it, causing the receiver
to run out of buffer space

– Additionally, if a frame is lost, the receiver will receive frames “out of order”. It
wants to buffer those frames to avoid retransmission, but cannot deliver them to
the client until the missing frame is re-sent and received

– Finally, sender needs to buffer frames in case it has to resend them

• Flow control is the notion that the sender must limit the rate at which it
transmits to something below the raw bandwidth of the link

• A common, important approach to flow control is the sliding window
protocol

10/3/07 CSE/EE 461 07au

Sliding Window Protocol

• There is some maximum number of un-ACK’ed frames the
sender is allowed to have in flight

– We call this “the window size”

– Example: window size = 2

Sender Receiver

T
im

e

Once the window is

full, each ACK’ed

frame allows the sender

to send one more frame

18

10/3/07 CSE/EE 461 07au

Sliding Window: Sender

• Assign sequence number to each frame (SeqNum)

• Maintain three state variables:
– send window size (SWS)

– last acknowledgment received (LAR)

– last frame sent (LFS)

• Maintain invariant: LFS - LAR <= SWS

• Advance LAR when ACK arrives

• Buffer up to SWS frames

≤SWS

LAR LFS

… …

Direction of slide

10/3/07 CSE/EE 461 07au

Sliding Window: Receiver

• Maintain three state variables
– receive window size (RWS)

– largest frame sequence number acceptable (LFA)

– last frame received (LFR)

• Maintain invariant: LFA - LFR <= RWS

• Frame SeqNum arrives:
– if LFR < SeqNum ≤≤≤≤ LFA⇒ accept + send ACK

– if SeqNum ≤≤≤≤ LFR or SeqNum > LFA⇒ discard

≤ RWS

LFR LFA

… …

19

10/3/07 CSE/EE 461 07au

ACKs

• Send cumulative ACKs
– send ACK for largest frame such that all frames less than this have

been received

– Why?

• Send an ACK each time a packet with
SeqNum in the window arrives
– even if you’ve seen that packet already

– Why?

10/3/07 CSE/EE 461 07au

Sliding Window Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

Sender Receiver

A3

3

4
5

6

A4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x

20

10/3/07 CSE/EE 461 07au

Sequence Number Space

• SeqNum field is finite; sequence numbers wrap around

• Sequence number space must be larger then number of
outstanding frames

• SWS <= MaxSeqNum-1 is not sufficient

– suppose 3-bit SeqNum field (0..7)

– SWS=RWS=7

– sender transmit frames 0..6

– arrive successfully, but ACKs lost

– sender retransmits 0..6

– receiver expecting 7, 0..5, but receives the original incarnation of 0..5

• SWS < (MaxSeqNum+1)/2 is correct rule

• Intuitively, SeqNum “slides” between two halves of sequence
number space

10/3/07 CSE/EE 461 07au

Sliding Window Summary

• Sliding window is best known algorithm in networking

• First role is to enable reliable delivery of packets
– Timeouts and acknowledgements

• Second role is to enable in order delivery of packets
– Receiver doesn’t pass data up to app until it has packets in order

• Third role is to enable flow control
– Prevents server from overflowing receiver’s buffer

