CSE/EE 461: Introduction to Computer Communications Networks Autumn 2007

Module 5 IP/ICMP and the Network Layer

John Zahorjan zahorjan@cs.washington.edu 534 Allen Center

Last Time

- Focus:
 - What to do when one shared LAN isn't big enough?
- · Interconnecting LANs
 - Bridges and LAN switches
 - But there are limits ...

Application Presentation

Session

Transport

Network

Data Link

Physical

10/22/2007

This Time: Internetworks

- Set of interconnected networks, e.g., the Internet
 - Scale and heterogeneity

The Protocol Stack

- Thinking about roles:
 - Transport: Process to Process
 - Example: TCP Reliable bytestream
 - Network: Host to Global Host
 - Example: IP Unreliable datagram
 - Data Link/Physical: Host to Local Host
 - Example: Ethernet Pretty reliable frame delivery

Application
Presentation
Session
Transport
Network
Data Link
Physical

10/22/2007

- IP is the network layer protocol used in the Internet
- · Routers are network level gateways
- Packet is the term for network layer protocol data units (PDUs)

Packet formats: encapsulation

· View of a packet on the (Ethernet) wires

Ethernet Header IP Header Higher layer headers and Payload

- Routers work with IP header, not higher
 - Higher would be a "layer violation"
- · Routers strip and add link layer headers

Network Layer Goals

- · Run over heterogeneous Link/Physical layers
 - Motivates minimizing promises about the service
 - · End-to-end argument
- · Global delivery
 - Must be scalable
 - This requires a new addressing scheme (IP addresses)
 - · Want address of remote host to give clue to direction to send packet
- Low overhead switching
 - Minimal processing of IP packet
 - E.g., don't have to rewrite IP header (much...)
 - "Fast path" processing
- Network control / diagnosis
 - If I'm having trouble communicating, what's wrong?
 - Routers have IP addresses, just like everyone else
 - · Ping / traceroute

10/22/2007 CSE/EE 461 07au

Review: Network Service Models

- · Datagram delivery: postal service
 - connectionless, best-effort or unreliable service
 - Network can't guarantee delivery of the packet
 - Each packet from a host is routed independently
 - Example: IP
- · Virtual circuit models: telephone
 - connection-oriented service
 - Signaling: connection establishment, data transfer, teardown
 - All packets from a host are routed the same way (router state)
 - Example: ATM, Frame Relay, X.25

10/22/2007

Internet Protocol (IP)

- IP (RFC791) defines a datagram "best effort" service
 - May be loss, reordering, duplication, and errors!
 - Currently IPv4 (IP version 4), IPv6 "on the way"
- Routers forward packets using periodically updated routes
 - Routing protocols (RIP, OSPF, BGP) run between routers to maintain routes (routing table, forwarding information base)
 - Over medium term, one path from host A to host B
- Global, hierarchical addresses, not flat addresses
 - 32 bits in IPv4 (128 bits in IPv6)
 - ARP (Address Resolution Protocol) maps IP to MAC addresses for final delivery

10/22/2007 CSE/EE 461 07au

The IP Narrow Waist Many Application email WWW phone (HTTP,SMTP) SMTP HTTP RTP. **Transport** TCP / UDP TCP UDP Network IΡ ethernet PPF CSMA async sonet. Many Link copper fiber radio. (Ethernet, ...) Model **Protocols** The "narrow waist" 10/22/2007 CSE/EE 461 07au

IP Addresses and Datagram Forwarding

- · IP addresses have hierarchy
 - MAC addresses are basically random
- · How the source gets the packet to the destination:
 - if source is on same network (LAN) as destination, source sends packet directly to destination host, using MAC address
 - else source sends data to a router on the same network as the source (using router's MAC address)
 - router will forward packet to a router on the next network over (by sending out through a different one of its interfaces, and MAC address on that network for next router)
 - and so on...
 - until packet arrives at router on same network as destination; then, router sends packet directly to destination host (MAC address)

Requirements

- every host needs to know address of a router on its LAN
- every router needs a routing table to tell it which neighboring network to forward a given packet on
- $\hspace{0.1in}$ Need some kind of support for mapping IP address \rightarrow MAC address

10/22/2007 CSE/EE 461 07au

Fragmentation: What, Why, and Why Not

- Different networks may have different frame limits (MTUs)
 - Ethernet 1.5KB, FDDI 4.5KB
- Don't know if packet will be too big for path beforehand
 - Could fragment on demand inside the network
 - IPv4
 - Could return an error to sending host
 - IPv6

10/22/2007

CSE/EE 461 07au

Fragmentation and Reassembly

- Strategy
 - fragment only when necessary (MTU < Datagram size)
 - · try to avoid fragmentation at source host
 - this implies that refragmentation must be possible
 - · fragments are self-contained IP datagrams
 - delay reassembly until destination host
 - do not recover from lost fragments

10/22/2007

Fragment Considerations

- Making fragments be datagrams provides:
 - Tolerance of loss, reordering and duplication
 - Ability to fragment fragments
- Reassembly done at the endpoint
 - Puts pressure on the receiver, not network interior
- Consequences of fragmentation:
 - Loss of any fragments causes loss of entire packet
 - Need to time-out reassembly when any fragments lost

10/22/2007

CSE/EE 461 07au

Avoiding Fragmentation

- Always send small datagrams
 - Might be too small
 - · Why does that matter?
- · "Guess" MTU of path
 - Use DF flag. May have large startup time
- Discover actual MTU of path
 - One RT delay w/help, much more w/o
 - · Hosts send packets, routers return error if too large

10/22/2007

Why Not?

- Why not implement fragmentation / reassembly in the network service?
- · Not often used, but
 - Header overhead in every packet
 - Processing overhead on every packet
 - "Fast path" processing requires additional checks
 - Processing overhead when fragmentation needed
 - Have to create new IP headers, so...
 - · Have to compute new checksums

10/22/2007

CSE/EE 461 07au

ICMP

- What happens when things go wrong?
 - Need a way to test/debug a large, widely distributed system
- ICMP = Internet Control Message Protocol (RFC792)
 - Companion to IP required functionality
- Used for error and information reporting:
 - Errors that occur during IP forwarding
 - Queries about the status of the network

10/22/2007

Common ICMP Messages

- · Destination unreachable
 - "Destination" can be host, network, port or protocol
- · Packet needs fragmenting but DF (don't fragment) flag is set
- Redirect
 - To shortcut circuitous routing
- · TTL Expired
 - Used by the "traceroute" program
- · Echo request/reply
 - Used by the "ping" program
- Cannot Fragment
- · Busted Checksum
- ICMP messages include portion of IP packet that triggered the error (if applicable) in their payload

10/22/2007

ICMP Restrictions

- The generation of error messages is limited to avoid cascades ... error causes error that causes error!
- Don't generate ICMP error in response to:
 - An ICMP error
 - Broadcast/multicast messages (link or IP level)
 - IP header that is corrupt or has bogus source address
 - Fragments, except the first
- ICMP messages are often rate-limited too.

10/22/2007

CSE/EE 461 07au

Key Concepts

- Network layer provides end-to-end data delivery across an internetwork, not just a LAN
 - Datagram and virtual circuit service models
 - IP/ICMP is the network layer protocol of the Internet
- Next: More detailed look at routing and addressing

10/22/2007