CSE 461: Distance Vector Routing

Jeremy Elson (jelson@gmail.com) Microsoft Research

Ben Greenstein (ben@cs.washington.edu) Intel Research

October 22, 2008

Next Topic

Focus

- Why is routing necessary?
- How do we calculate routes?
- How are routes used?
- Routing Algorithms
 - Distance Vector routing
 - A real-world implementation: RIP

Why can't we make bridged networks bigger and bigger? Why not make them Internet-sized?

Scaling Limitations of Bridged Networks

Table size: works fine for a few thousand nodes.Can it scale to a billion?Can we do lookups at "wire speed"?

Scaling Limitations of Bridged Networks

Table maintenance: to find unknown nodes, we broadcast. *n* nodes looking for *m* destinations: *nm* stray packets on your link!

Scaling Limitations of Bridged Networks

Hierarchy to the rescue!

Disadvantage: The network is no longer "plug and play". We need to assign **addresses** – not just unique identifiers. Advantages: We can now aggregate routing information. 1/nth as many networks as hosts \rightarrow fewer updates, smaller tables. Local changes don't cause global updates.

The 0, 1, Infinity Principle At Work The original Internet had exactly 1 level of hierarchy: Network Address and Host Address (Class A, B, C...) From the mid-90's: CIDR allows arbitrary sub-networking. Further improves route aggregation in the Internet core.

Forwarding and Routing

- Each node has a "routing table": tells the router which outgoing link should be used for each known destination network
- Routing is the process that all routers go through to calculate the routing tables
 - Involves *global* decisions
- Forwarding is the process that each router goes through for every packet to send it on its way
 - Involves *local* decisions
 - In the Internet, more specific routes are encountered as you approach your destination

What's in a Routing Table?

 The routing table at A, for example, lists at a minimum the next hops for the different destinations

Dest	Next Hop
В	В
С	С
D	С
ш	Е
F	F
G	F

Kinds of Routing Schemes

- Many routing schemes have been proposed/explored!
- <u>Distributed</u> or centralized
- <u>Hop-by-hop</u> or source-based
- <u>Deterministic</u> or stochastic
- <u>Single</u> or multi-path
- <u>Static</u> or dynamic route selection
- Internet is to the left ☺

Routing Questions/Challenges

- How do we choose best path? (What does "best" mean?)
- How do we scale to billions of nodes?
- How do we adapt to failures or changes?
 - Node and link failures, plus message loss
 - We will use distributed algorithms
- "Real world" concerns of the Internet (ignore for now):
 - Parties don't trust each other
 - Policy has to come into play

Some Pitfalls

- Using global knowledge is challenging
 - Hard to collect
 - Can be out-of-date
 - Needs to summarize in a locally-relevant way
- Inconsistencies in local /global knowledge can cause:
 - Loops (black holes)
 - Oscillations, esp. when adapting to load

Network as a Graph

Routing is essentially a problem in graph theory.
Remember Bellman-Ford Single-Source Shortest Path?

Distance Vector Routing

- Assume:
 - Each router knows only address/cost of neighbors
- Goal:
 - Calculate routing table of next hop information for each destination at each router
- Idea:
 - Tell neighbors about learned distances to all destinations
- This is (vaguely) like running Bellman-Ford once for each source everywhere in parallel

- Each router maintains a vector of costs to all destinations as well as routing table
 - Initialize neighbors with known cost, others with infinity
- Periodically send copy of distance vector to neighbors
- On reception of a vector, if your neighbor's path to a destination plus cost to that neighbor cost is better
 - Update the cost and next-hop in your outgoing vectors
- Assuming no changes, will converge to shortest paths
 - But what happens if there are changes?

DV Example – Initial Table at A

Dest	Cost	Next
В	1	В
С	1	С
D	8	-
Е	1	Е
F	1	F
G	80	_

DV Example – Final Table at A

This simple example converges after one iteration

Dest	Cost	Next
В	1	В
С	1	С
D	2	С
Е	1	Е
F	1	F
G	2	F

What if there are changes?

- One scenario: Suppose link between F and G fails
 - 1. F notices failure, sets its cost to G to infinity and tells A
 - 2. A sets its cost to G to infinity too, since it learned it from F
 - 3. A learns route from C with cost 2 and adopts it

Dest	Cost	Next
В	1	В
С	1	С
D	2	С
Е	1	Е
F	1	F
G	3	С

 Imagine two nodes want to maintain routes to the Internet.

What happens when the link between B and Internet fails?

- B hears of a route to the Internet via A with cost 2
- So B switches to the "better" (but wrong!) route

A hears from B and increases its cost

- B hears from A and (surprise) increases its cost
- Cycle continues and we "count to infinity"

Packets caught in the crossfire loop between A and B

Split Horizon

- Solves trivial count-to-infinity problem
- Router never advertises the cost of a destination back to its next hop – that's where it learned it from!
- Poison reverse: go even further advertise back infinity
- However, DV protocols still subject to the same problem with more complicated topologies – e.g., 3 node loops
 - Many enhancements suggested

Routing Information Protocol (RIP)

- DV protocol with hop count as metric
 - Infinity value is 16 hops; limits network size
 - Includes split horizon with poison reverse
- Routers send vectors every 30 seconds
 - With triggered updates for link failures
 - Time-out in 180 seconds to detect failures
- RIPv1 specified in RFC1058
 - www.ietf.org/rfc/rfc1058.txt
- RIPv2 (adds authentication etc.) in RFC1388
 - www.ietf.org/rfc/rfc1388.txt

RIP is an "Interior Gateway Protocol"

- Suitable for small- to medium-sized networks
 - such as within a campus, business, or ISP
- Unsuitable for Internet-scale routing
 - hop count metric poor for heterogeneous links
 - 16-hop limit places max diameter on network
- Later, we'll talk about "Exterior Gateway Protocols"
 - used between organizations to route across Internet

IP Datagram Forwarding

- Routing algorithms run on routers, typically not on hosts
- Hosts have few (or one) simple rules:
 - If the destination is on my network, send it directly (ARP for the host)
 - If the destination is on another network, send it to the *default router* (ARP for the router)
 - Ethernet header addressed to router; IP header addressed to end-host
- Routers (sometimes) have a more global view
 - If you're the "last router", ARP for the host
 - Otherwise, send to the next router (may not be Ethernet, so may not literally ARP)
- Border routers often have small routing tables and default gateways
- Internet core routers are behemoths that know all top-level networks

Internet Core Routers

Internet Peering Points

- Hierarchy and route aggregation are necessary for scaling
- Things we must care about: scale, dynamics
- Routing is a global process, forwarding is local one
- The Distance Vector algorithm and RIP
 - Simple and distributed exchange of shortest paths.
 - Weak at adapting to changes (loops, count to infinity)