
CSE 461: Link State Routing



Link State Routing

 Same assumptions/goals, but different idea than DV:

 Make sure all routers have a view of the global 
topology

 Have them all independently compute the best 
routes
• Note our good old “same input + same algorithm 

consistent output” trick

 Two phases:
1. Topology dissemination (flooding)

- New News travels fast.  

- Old News should eventually be forgotten

2. Shortest-path calculation (Dijkstra’s algorithm)

- N log(n)



 Each router monitors state of its directly connected links

 Periodically, send this information to your neighbors

 Generate a link state packet

 Contains router ID, link list, sequence number, time-to-live

 Store and forward LSPs received – if (ID, seqno) is more recent

 Remember this packet for routing calculations

 Forward LSP to all ports other than incoming ports

 This produces a flood; each LSP will travel over the same link at 
most once in each direction

 Flooding is fast, and can be made reliable with acknowledgments

Flooding



Example
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Will B transmit this LSP to C or A?  Why or why not?



Flooding Sequence Numbers

 Use nonces instead of sequence numbers?  (i.e., accept 
any LSP with a nonce not equal to the one stored)

 Why is this a bad idea?

 Just make the space really big (e.g., 128-bit)?

 What happens if we accidentally emit an n-1 seqno?

 Allow the sequence number space to wrap around?

How do we keep the sequence number space 

From being exhausted?
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ARPANet failed in 1981, because…
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A dying router 

emitted 3 LSPs with 

3 very unlucky 

sequence numbers.  

Soon, the entire 

network was doing 

nothing but 

propagating these 

same three LSPs 

everywhere.



Other Complications

 When link/router fails need to remove old data. How?

 LSPs carry sequence numbers to determine new data

 Send a new LSP with cost infinity to signal a link 
down

 What happens if the network is partitioned and heals?

 Different LS databases must be synchronized

 Inconsistent data across routers  loops



Shortest Paths: Dijkstra’s Algorithm

 N: Set of all nodes

 M: Set of nodes for which we think we have a shortest 
path

 s: The node executing the algorithm

 L(i,j): cost of edge (i,j) (inf if no edge connects)

 C(i): Cost of the path from s to i.

 Two phases:

 Initialize C(n) according to received link states

 Compute shortest path to all nodes from s
• Link costs are symmetric



The Algorithm

// Initialization

M = {s}   // M is the set of all nodes considered so far.

For each n in N - {s}

C(n) = L(s,n)

// Find Shortest paths

Forever {

Unconsidered = N-M

If Unconsidered == {} break    

M = M + {w} such that C(w) is the smallest in Unconsidered

For each n in Unconsidered

C(n) = MIN(C(n), C(w) + L(w,n))

}



Open Shortest Path First (OSPF)

 Most widely-used Link State implementation today

 Basic link state algorithms plus many features:

 Authentication of routing messages

 Extra hierarchy: partition into routing areas
• Only bordering routers send link state information to another 

area

• Reduces chatter.

• Border router “summarizes” network costs within an area by 
making it appear as though it is directly connected to all 
interior routers

 Load balancing



Distance Vector Message Complexity

N: number of nodes in the system

M: number of links

D: diameter of network (longest shortest path)

Da: Average degree of a node (# of outgoing links)

 Size of each update: 

 Number of updates sent in one iteration: 

 Number of iterations for convergence: 

 Total message cost: 

 Number of messages: 

 Incremental cost per iteration:
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Distance Vector vs. Link State

 When would you choose one over the other?

 Be warned when reading about this on the Internet: 
people rate implementations, not fundamentals

 Bandwidth consumed

 Memory used

 Computation required

 Robustness

 Functionality

 Global view of network vs. local?

 Troubleshooting?

 Speed of convergence



Why have two protocols?

 DV: “Tell your neighbors about the world.”

 Easy to get confused

 Simple but limited, costly and slow
• Number of hops might be limited

• Periodic broadcasts of large tables

• Slow convergence due to ripples and hold down

 LS: “Tell the world about your neighbors.”

 Harder to get confused

 More expensive sometimes
• As many hops as you want

• Faster convergence (instantaneous update of link state changes)

• Able to impose global policies in a globally consistent way

– load balancing



Cost Metrics

 How should we choose cost?

 To get high bandwidth, low delay or low loss?

 Do they depend on the load?

 Static Metrics

 Hopcount is easy but treats OC3 (155 Mbps) and T1 (1.5 
Mbps)

 Can tweak result with manually assigned costs

 Dynamic Metrics

 Depend on load; try to avoid hotspots (congestion)

 But can lead to oscillations (damping needed)



 Based on load and link

 Variation limited (3:1) 
and change damped

 Capacity dominates at 
low load; we only try to 
move traffic if high load
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Key Concepts

 Routing uses global knowledge; forwarding is local

 Many different algorithms address the routing problem

 We have looked at two classes: DV (RIP) and LS 
(OSPF)

 Challenges:

 Handling failures/changes

 Defining “best” paths

 Scaling to millions of users



Dijkstra Example – After the flood
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Dijkstra Example – Post 

Initialization

* *
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Considering a Node
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Pushing out the horizon
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Next Phase
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Considering the last node
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Dijkstra Example – Done
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