
CSE 461: Link State Routing

Link State Routing

 Same assumptions/goals, but different idea than DV:

 Make sure all routers have a view of the global
topology

 Have them all independently compute the best
routes
• Note our good old “same input + same algorithm

consistent output” trick

 Two phases:
1. Topology dissemination (flooding)

- New News travels fast.

- Old News should eventually be forgotten

2. Shortest-path calculation (Dijkstra’s algorithm)

- N log(n)

 Each router monitors state of its directly connected links

 Periodically, send this information to your neighbors

 Generate a link state packet

 Contains router ID, link list, sequence number, time-to-live

 Store and forward LSPs received – if (ID, seqno) is more recent

 Remember this packet for routing calculations

 Forward LSP to all ports other than incoming ports

 This produces a flood; each LSP will travel over the same link at
most once in each direction

 Flooding is fast, and can be made reliable with acknowledgments

Flooding

Example

LSP generated by X at T=0

X A

C B D

X A

C B D

X A

C B D

X A

C B D

T=0 T=1

T=2 T=3

?

?

Will B transmit this LSP to C or A? Why or why not?

Flooding Sequence Numbers

 Use nonces instead of sequence numbers? (i.e., accept
any LSP with a nonce not equal to the one stored)

 Why is this a bad idea?

 Just make the space really big (e.g., 128-bit)?

 What happens if we accidentally emit an n-1 seqno?

 Allow the sequence number space to wrap around?

How do we keep the sequence number space

From being exhausted?

n 0
n-1

1 2

a

>a

<a

Sequence Number Wraparound

Does this solve

sequence

number

exhaustion?

ARPANet failed in 1981, because…

a

b

c

a<b

b<c

c<a

A dying router

emitted 3 LSPs with

3 very unlucky

sequence numbers.

Soon, the entire

network was doing

nothing but

propagating these

same three LSPs

everywhere.

Other Complications

 When link/router fails need to remove old data. How?

 LSPs carry sequence numbers to determine new data

 Send a new LSP with cost infinity to signal a link
down

 What happens if the network is partitioned and heals?

 Different LS databases must be synchronized

 Inconsistent data across routers loops

Shortest Paths: Dijkstra’s Algorithm

 N: Set of all nodes

 M: Set of nodes for which we think we have a shortest
path

 s: The node executing the algorithm

 L(i,j): cost of edge (i,j) (inf if no edge connects)

 C(i): Cost of the path from s to i.

 Two phases:

 Initialize C(n) according to received link states

 Compute shortest path to all nodes from s
• Link costs are symmetric

The Algorithm

// Initialization

M = {s} // M is the set of all nodes considered so far.

For each n in N - {s}

C(n) = L(s,n)

// Find Shortest paths

Forever {

Unconsidered = N-M

If Unconsidered == {} break

M = M + {w} such that C(w) is the smallest in Unconsidered

For each n in Unconsidered

C(n) = MIN(C(n), C(w) + L(w,n))

}

Open Shortest Path First (OSPF)

 Most widely-used Link State implementation today

 Basic link state algorithms plus many features:

 Authentication of routing messages

 Extra hierarchy: partition into routing areas
• Only bordering routers send link state information to another

area

• Reduces chatter.

• Border router “summarizes” network costs within an area by
making it appear as though it is directly connected to all
interior routers

 Load balancing

Distance Vector Message Complexity

N: number of nodes in the system

M: number of links

D: diameter of network (longest shortest path)

Da: Average degree of a node (# of outgoing links)

 Size of each update:

 Number of updates sent in one iteration:

 Number of iterations for convergence:

 Total message cost:

 Number of messages:

 Incremental cost per iteration:

Link State Message Complexity

N: number of nodes in the system

M: number of links

D: diameter of network (longest shortest path)

Da: Average degree of a node (# of outgoing links)

 Size of each update:

 Number of updates sent in one iteration:

 Number of iterations for convergence:

 Total message cost:

 Number of messages:

 Incremental cost per iteration:

Distance Vector vs. Link State

 When would you choose one over the other?

 Be warned when reading about this on the Internet:
people rate implementations, not fundamentals

 Bandwidth consumed

 Memory used

 Computation required

 Robustness

 Functionality

 Global view of network vs. local?

 Troubleshooting?

 Speed of convergence

Why have two protocols?

 DV: “Tell your neighbors about the world.”

 Easy to get confused

 Simple but limited, costly and slow
• Number of hops might be limited

• Periodic broadcasts of large tables

• Slow convergence due to ripples and hold down

 LS: “Tell the world about your neighbors.”

 Harder to get confused

 More expensive sometimes
• As many hops as you want

• Faster convergence (instantaneous update of link state changes)

• Able to impose global policies in a globally consistent way

– load balancing

Cost Metrics

 How should we choose cost?

 To get high bandwidth, low delay or low loss?

 Do they depend on the load?

 Static Metrics

 Hopcount is easy but treats OC3 (155 Mbps) and T1 (1.5
Mbps)

 Can tweak result with manually assigned costs

 Dynamic Metrics

 Depend on load; try to avoid hotspots (congestion)

 But can lead to oscillations (damping needed)

 Based on load and link

 Variation limited (3:1)
and change damped

 Capacity dominates at
low load; we only try to
move traffic if high load

225

N
e

w
 m

e
tr

ic
 (

ro
u

ti
n

g
 u

n
it
s
)

140

90

75

60

30

25% 50% 75% 100%

9.6-Kbps satellite link

9.6-Kbps terrestrial link

56-Kbps satellite link

56-Kbps terrestrial link Utilization

Revised ARPANET Cost Metric

Key Concepts

 Routing uses global knowledge; forwarding is local

 Many different algorithms address the routing problem

 We have looked at two classes: DV (RIP) and LS
(OSPF)

 Challenges:

 Handling failures/changes

 Defining “best” paths

 Scaling to millions of users

Dijkstra Example – After the flood

10

2 3

5

2

1

4 6

7

9
0

The Unconsidered.The Considered

* *

Dijkstra Example – Post

Initialization

* *

10

2 3

5

2

1

4 6

7

9
0

5

10
inf

inf

The Unconsidered.The Considered

Considering a Node

10

2 3

5

2

1

4 6

7

9
0

5

10
inf

inf

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 8,14, and 7

Pushing out the horizon

8

2 3

5

2

1

4 6

7

9
0

5 7

14

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 13

Next Phase

8

2 3

5

2

1

4 6

7

9
0

5 7

13

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 9

Considering the last node

8

2 3

5

2

1

4 6

7

9
0

5 7

9

The Unconsidered.The Considered The Under Consideration (w).

Dijkstra Example – Done

8

2 3

5

2

1

4 6

7

9
0

5 7

9

