Correctness

- Redundancy
- Bit encodingFraming
- Error detection/correction
- Addresses (UIDs)
- Header + data
- IP: semantics
- Addressing:
 - DHCP
 - ARP
 - DNS
 - NAT
 - Stun
- Layering
- Routing
- UDP: semantics
- Port
- Socket abstraction
- TCP: semantics
- ARQ
- Reorder buffer
- Stream- vs. packet orientation

How does RFID fit in here (and everywhere)?

Scalability

- Size => heterogeneous
 - Hardware / performance
 Speed
 - Speed
 Error rate
 - Administration / policy
 - Standard's committees
 - Distance / latency
- Size => dynamic
 - Independent failures
 - Always in transient state...
 - Dampening
 - LAN bridge algorithm
 - IP routing
- Size => long lived
 Version # in header
 - version # in neader
- End-to-end argument
- Protocol layering
- Routing basics
 - LAN broadcast
 - Collision resolution
 - Carrier sense
 - Collision detect
 - Ethernet
 - 802.11 wireless
 - Forwarding
 - DV/LS routing
- Layered routing
 - LAN bridging
 - DHCP / gateways
 - NAT
 - Subnets
 - Supernets (CIDR)
 - BGP
- Congestion control (TCP)
 - ŘTT estimation
 - AIMD

Performance Buffering Avoid layer crossing • Timeouts RTT estimation Lost data detection • TCP Nagel'ing Flow control Sliding window Bandwidth x delay Congestion control • AIMD Slow start Fast rexmit **Distributed State: Protocols** • P2P TOMCAST: ordering Lamport clocks • 2PC: agreement Independent failures Client-server Don't distribute state • e.g., Lobby Push state to client • e.g., web • e.g., IP routing "Stateless server" • HTTP • NFS Connections • TCP: 2 node P2P or duplex

• TCP: 2 hode P2P client-server?