

CSE 461 � Module 10

Introduction to the Transport Layer

M10.2

Last Time

� We finished up the Network layer

� Internetworks (IP)

� Routing (DV/ RIP, LS/ OSPF, BGP)

� It was all about rou ting: how to

provide end-to-end delivery of

packets. Physical

Data Link

Network

Transport

Session

Presentation

Application

M10.3

This Time

� We begin on the Transport layer

� Focus

� Process-to-process comm unication

� Fast?

� Reliable?

� Impact on the network

� Congestion control

� Topics

� The Transport layer

� Acknowledgem ents and
retransmissions (ARQ)

� Slid ing windows

Physical

Data Link

Network

Transport

Session

Presentation

Application

M10.4

The Transport Layer

� Bu ilds on the services of the Network layer

� �TCP/ IP�

� Communication between processes running on hosts

� Naming/ Addressing

� Stronger guarantees of message delivery make sense

� This is the first layer that is talking �end-to-end �

M10.5

Internet Transport Protocols

� UDP

� Datagram abstraction between processes

� With error detection

� TCP

� Bytestream abstraction between processes

� With reliability

� Plus congestion control (later!)

SrcPort DstPort

Length Checksum

Data

0 16 31

M10.6

UDP/IP Properties
(User Datagram Protocol)

UDP

� Datagram oriented

� Lost packets

� Reordered packets

� Duplicate packets

� Limited size packets

IP

� Datagram oriented

� Lost packets

� Reordered packets

� Duplicate packets

� Limited size packets

M10.7

TCP/IP Properties
(Transmission Control Protocol)

TCP

� Connection-oriented

� Reliable byte-stream d elivery

� In-order delivery

� Single delivery

� Arbitrarily long messages

� Synchronization

� Flow control

� Congestion control

IP

� Datagram oriented

� Lost packets

� Reordered packets

� Duplicate packets

� Limited size packets

M10.8

TCP Packet Format

16 bit window size gets

Cramped with large

Bandwidth x delay

16 bits --> 64K

BD ethernet: 122KB

STS24 (1.2Gb/s): 14.8MB

32 bit sequence number

must not wrap around faster

than the maximum packet

lifetime. (120 seconds)

 -- 622Mb/s link: 55 seconds

M10.9

TCP End-to-End Properties

� TCP provides a full-duplex connection

� Each side of a connection can send to the other

� Connection is a stream

� Packet boundaries may not be visible to application

� Sliding window

� Endpoints exchange window sizes

� Packets carry sequence numbers

� Actually, byte counts in the connection stream

� Performance

� Reliability (ARQ)

M10.10

End-to-end Properties

� Performance

� Slid ing Window

� Try to enable sender to put bandwid th x delay product bytes

on the wire

� Reliability

� Lost packets?

� Sliding wind ow performs flow control

� Sliding wind ow performs ARQ (Automatic Repeat Request)

� Duplicate / out-of-ord er packets?

� Sliding wind ow receive (re-order) buffer

M10.11

Network Property: Congestion Control

� TCP also implements congestion control

� High level goal: keep from over-loading the bottleneck network

link

� Immed iate goal: find the fastest transmission rate that doesn�t

overload the bottleneck

� Does it make sense to pu t congestion control in TCP?

� Could it be in some other layer?

� Would it make sense to apply it to UDP?

� Another goal: fairness

� I�m not slowing down, you slow down�

M10.12

TCP / UDP comparison

ConnectionlessConnection

Packet-orientedStream-oriented

UnreliableReliable

UDPTCP

M10.13

TCP / UDP comparison

� Stream- vs. packet-oriented

� Visible packet bound aries can act as �end of record� indicators

to application

� In a stream, if the application wants the notion of �records�, it

must embed them in the data

� Example: lines in a text file

� Since TCP doesn�t know about app record boundaries, read ing

record s can be cumbersome

� Each read() operation returns w hatever data happens to

have arrived in the stream to this point

M10.14

TCP / UDP comparison

� Connection vs. connectionless

� UDP: �flexible� (or �you don�t know who you�re talking with�)

� Incom ing d ata can be from anywhere

� Outgoing data can go anywhere

� (Java API provides a connect() interface � filters packets before returning

them to app)

� TCP: incom ing/ ou tgoing packets are separated in to �flows�

� Provides a nice p rogram ming abstraction for many apps

� How do I open a connection?

� How do I close one?

� How do I know when the other side has stopped listening/ send ing

