
  

 

CSE 461 � Module 11

Connections
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This Time

� More on the Transport Layer 

� Focus

� How d o we connect processes?

� Topics

� Naming processes

� Connection setup /  teardown

� Flow  control
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Naming Processes/Services

� Process here is an abstract term for you r Web browser (HTTP), 

Email servers (SMTP), hostname translation (DNS), RealAud io 

p layer (RTSP), etc.

� H ow  d o w e identify for remote communication?

� Process id or memory add ress are OS-specific and  transient 

� So TCP and  UDP use Ports

� 16-bit integers representing mailboxes that processes �rent�

� typically from OS

� Identify endpoint uniquely as (IP ad dress, protocol, port)

� OS converts into process-specific channel, like �socket�

CSE 461, Winter 2009  M11.4

Processes as Endpoints
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Picking Port Numbers

� We still have the problem of allocating port num bers

� What port should  a Web server use on host X?

� To what port shou ld  you send  to contact that Web server?

� Servers typ ically bind  to �w ell-known� port num bers

� e.g., H TTP 80, SMTP 25, DNS 53, � look in  / etc/ services

� Ports below 1024 reserved  for �w ell-known� services

� Clients use OS-assigned  temporary (ephem eral) ports

� Above 1024, recycled  by OS when client finished
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SrcPort DstPort

Checksum Length
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User Datagram Protocol (UDP)

� Provides message delivery between processes

� Source port filled  in  by OS as message is sent

� Destination port id entifies UDP d elivery queue at endp oint
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UDP Checksum

� UDP includes optional protection against errors

� Checksum intend ed as an end -to-end  check on delivery

� So it covers d ata, UDP header, and IP pseu doheader

SrcPort DstPort

Checksum Length

Data

0 16 31



  

 

CSE 461, Winter 2009  M11.9

Transmission Control Protocol (TCP)

� Reliable bi-directional bytestream  between processes

� Message bou nd aries are not preserved

� Connections

� Conversation between end points w ith beginning and  end

� Flow  control 

� Prevents sender from over-running receiver buffers

� Congestion control

� Prevents sender from over-running network buffers
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TCP Delivery
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TCP Header Format

� Ports p lus IP addresses identify a connection
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TCP Header Format

� Sequence, Ack numbers used  for the slid ing window



  

 

CSE 461, Winter 2009  M11.13
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TCP Header Format

� Flags m ay be URG, ACK, PUSH , RST, SYN, FIN
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TCP Header Format

� Advertised window  is used  for flow  control
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TCP Connection Establishment

� Both connecting and  closing are (slightly) more complicated  than 

you  might expect

� That they can work is reasonably straightforward

� H arder is w hat to d o when things go w rong

� TCP SYN+ACK attack

� Close looks a bit compicated because both sid es have to close to be 

d one

� Conceptually, there are two one-way connections

� Don�t want  to hang around  forever if other end crashes
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TCP Connection Establishment

� Both sender and  receiver must be ready before we start 

to transfer the data

� Send er and receiver need  to agree on a set of parameters

� e.g., the Maximum Segment Size (MSS)

� This is �signaling�

� It sets u p state at the endp oints

� Compare to �d ialing� in  the telephone netw ork

� In TCP a Three-Way Handshake is u sed
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Three-Way Handshake

� Opens both d irections for transfer

Active opener
(client)

Passive listener
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data
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Some Comments

� We could  abbreviate this setup, bu t it was chosen to be 

robust, especially against delayed  duplicates

� Three-way hand shake from Tomlinson 1975

� Choice of changing initial sequence num bers (ISN s) 

m inimizes the chance of hosts that crash getting 

confused  by a previous incarnation of a connection

� But w ith random  ISN it actually p roves that two hosts 

can com municate

� Weak form of authentication
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Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data
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Connection Teardown

� Orderly release by sender and  receiver when done

� Delivers all pending data and �hangs u p�

� Cleans up state in sender and  receiver

� TCP provides a �sym metric� close

� both sid es shutdown ind ependently
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TCP Connection Teardown
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The TIME_WAIT State

� We wait 2MSL (two times the m axim um  segm ent 

lifetime of 60 seconds) before completing the close

� Why?

� ACK might have been lost and  so FIN will be resent

� Could  interfere with a subsequent connection
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Berkeley Sockets interface

� N etworking p rotocols im plemented  in OS

� OS mu st expose a programming API to applications

� most OSs use the �socket� interface

� originally provid ed by BSD 4.1c  in ~1982.

� Principle abstraction is a �socket�

� a point at w hich an application attaches to the network

� d efines op erations for creating connections, attaching to 

network, sending and  receiving data, closing connections
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TCP (connection-oriented)

Server

Socket()

Bind()
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Socket()
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Connect()
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Data (request)

Data (reply)
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UDP (connectionless)
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Using Sockets: UDP

� import java.net.*;

� UDP sockets:

� new DatagramSocket();         / /  binds to ephemeral port number

� new DatagramSocket(port);  / /  tries to bind  to �port�

� DatagramPacket

� Unit of transfer betw een application  and netw orking software

� new DatagramPacket( byte[] buf, in t len);

� new DatagramPacket( byte[] buf, in t len, InetAdd ress addr, int port);

� Sending data:

� Construct a DatagramPacket

� Set its data field , and its address components

� myDatagramSocket.send( myDatagramPacket)
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Java / UDP

� Java also has an interface supporting connect(SocketAddr addr), but it�s a 

layer above UDP

� Filters incoming packets not from addr

� Filters outgoing packets not from addr

� Performance /  correctness issue:

� Is a copy of the data portion of a DatagramPacket made when send() is invoked, 

or is a reference to the byte[] buf kept?

� Blocking vs. non-blocking IO

� Non-blocking options

1. import java.net.*; 

� DatagramSocket.setSOTimeout(in t timeout);

2. import java.nio.*;

� More general (complicated) support
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Using Sockets: TCP

� The TCP distinction between passive and active op en is embed ded  in the 
(typical) socket interfaces

� There are tw o kinds of sockets:

� Socket

� ServerSocket

� Server starts, creates a server socket, binds it to a local port, and listens for a 

client to connect

� Client starts, creates a socket on an ephemeral port, and connects to the 

server socket

� As a result of the connection, the server socket creates a new socket to return 

to the application

� Provides a handy w ay to identify/ name a single flow in  the application code 
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TCP Server-side: Java

� Create:
� ServerSocket ss = new ServerSocket();

� ServerSocket ss = new ServerSocket(port);

� Listen:

� Socket s = ss.accept();
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TCP Client side: Java

� Create:
� Socket s = new Socket();

� Connect:
� s.connect(serverAddress);

� S.connect(serverAddress, timeout);

� Use:

� It�s Java, the sockets support streams,  the mind  boggles
� BufferedReader in = new BufferedReader(new InputStreamReader(s.getInputStream()));

� in.readLine();

� PrintWriter out = new PrintWriter(s.getOutputStream(), true);

� Out.print(data);

� OutStream outStream = s.getOutputStream();

� outStream.write( buf, 0, n);  // byte[] buf for n bytes starting at offset 0
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Key Concepts

� We use ports to name p rocesses in TCP/ UDP

� �Well-know n� ports are u sed for pop ular services

� Connection setup and teardown com plicated  by the 

effects of the netw ork on messages

� TCP uses a three-w ay hand shake to set u p a connection

� TCP uses a symmetric d isconnect


