
  

 

CSE 461 � Module 11

Connections

CSE 461, Winter 2009  M11.2

This Time

� More on the Transport Layer 

� Focus

� How d o we connect processes?

� Topics

� Naming processes

� Connection setup /  teardown

� Flow  control

Physical

Data Link

Network

Transport

Session

Presentation

Application



  

 

CSE 461, Winter 2009  M11.3

Naming Processes/Services

� Process here is an abstract term for you r Web browser (HTTP), 

Email servers (SMTP), hostname translation (DNS), RealAud io 

p layer (RTSP), etc.

� H ow  d o w e identify for remote communication?

� Process id or memory add ress are OS-specific and  transient 

� So TCP and  UDP use Ports

� 16-bit integers representing mailboxes that processes �rent�

� typically from OS

� Identify endpoint uniquely as (IP ad dress, protocol, port)

� OS converts into process-specific channel, like �socket�

CSE 461, Winter 2009  M11.4

Processes as Endpoints



  

 

CSE 461, Winter 2009  M11.5

Picking Port Numbers

� We still have the problem of allocating port num bers

� What port should  a Web server use on host X?

� To what port shou ld  you send  to contact that Web server?

� Servers typ ically bind  to �w ell-known� port num bers

� e.g., H TTP 80, SMTP 25, DNS 53, � look in  / etc/ services

� Ports below 1024 reserved  for �w ell-known� services

� Clients use OS-assigned  temporary (ephem eral) ports

� Above 1024, recycled  by OS when client finished

CSE 461, Winter 2009  M11.6

SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

� Provides message delivery between processes

� Source port filled  in  by OS as message is sent

� Destination port id entifies UDP d elivery queue at endp oint



  

 

CSE 461, Winter 2009  M11.7

Application
process

Application
process

Application
process

Packets arrive

Ports

Message

Queues

DeMux on

Port #

UDP Delivery

Kernel

boundary

CSE 461, Winter 2009  M11.8

UDP Checksum

� UDP includes optional protection against errors

� Checksum intend ed as an end -to-end  check on delivery

� So it covers d ata, UDP header, and IP pseu doheader

SrcPort DstPort

Checksum Length

Data

0 16 31



  

 

CSE 461, Winter 2009  M11.9

Transmission Control Protocol (TCP)

� Reliable bi-directional bytestream  between processes

� Message bou nd aries are not preserved

� Connections

� Conversation between end points w ith beginning and  end

� Flow  control 

� Prevents sender from over-running receiver buffers

� Congestion control

� Prevents sender from over-running network buffers

CSE 461, Winter 2009  M11.10

TCP Delivery

Application process

Write

bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read

bytes

TCP

Receive buffer

�

� �



  

 

CSE 461, Winter 2009  M11.11

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

� Ports p lus IP addresses identify a connection

CSE 461, Winter 2009  M11.12

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

� Sequence, Ack numbers used  for the slid ing window



  

 

CSE 461, Winter 2009  M11.13

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

� Flags m ay be URG, ACK, PUSH , RST, SYN, FIN

CSE 461, Winter 2009  M11.14

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

� Advertised window  is used  for flow  control



  

 

CSE 461, Winter 2009  M11.15

TCP Connection Establishment

� Both connecting and  closing are (slightly) more complicated  than 

you  might expect

� That they can work is reasonably straightforward

� H arder is w hat to d o when things go w rong

� TCP SYN+ACK attack

� Close looks a bit compicated because both sid es have to close to be 

d one

� Conceptually, there are two one-way connections

� Don�t want  to hang around  forever if other end crashes

CSE 461, Winter 2009  M11.16

TCP Connection Establishment

� Both sender and  receiver must be ready before we start 

to transfer the data

� Send er and receiver need  to agree on a set of parameters

� e.g., the Maximum Segment Size (MSS)

� This is �signaling�

� It sets u p state at the endp oints

� Compare to �d ialing� in  the telephone netw ork

� In TCP a Three-Way Handshake is u sed



  

 

CSE 461, Winter 2009  M11.17

Three-Way Handshake

� Opens both d irections for transfer

Active opener
(client)

Passive listener
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

CSE 461, Winter 2009  M11.18

Some Comments

� We could  abbreviate this setup, bu t it was chosen to be 

robust, especially against delayed  duplicates

� Three-way hand shake from Tomlinson 1975

� Choice of changing initial sequence num bers (ISN s) 

m inimizes the chance of hosts that crash getting 

confused  by a previous incarnation of a connection

� But w ith random  ISN it actually p roves that two hosts 

can com municate

� Weak form of authentication



  

 

CSE 461, Winter 2009  M11.19

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN

SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACKAC
K
 + FIN

/AC
K Timeout after two 

segment lifetimes
FIN/ACK

ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open/SYN

TCP State Transitions

CSE 461, Winter 2009  M11.20

Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED



  

 

CSE 461, Winter 2009  M11.21

Connection Teardown

� Orderly release by sender and  receiver when done

� Delivers all pending data and �hangs u p�

� Cleans up state in sender and  receiver

� TCP provides a �sym metric� close

� both sid es shutdown ind ependently

CSE 461, Winter 2009  M11.22

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK 

FIN 

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK

FIN_WAIT_2

TIME_WAIT

CLOSED
CLOSED

�



  

 

CSE 461, Winter 2009  M11.23

The TIME_WAIT State

� We wait 2MSL (two times the m axim um  segm ent 

lifetime of 60 seconds) before completing the close

� Why?

� ACK might have been lost and  so FIN will be resent

� Could  interfere with a subsequent connection

CSE 461, Winter 2009  M11.24

Berkeley Sockets interface

� N etworking p rotocols im plemented  in OS

� OS mu st expose a programming API to applications

� most OSs use the �socket� interface

� originally provid ed by BSD 4.1c  in ~1982.

� Principle abstraction is a �socket�

� a point at w hich an application attaches to the network

� d efines op erations for creating connections, attaching to 

network, sending and  receiving data, closing connections



  

 

CSE 461, Winter 2009  M11.25

TCP (connection-oriented)

Server

Socket()

Bind()

Client

Socket()

Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until

connect

Process

request

Connection Establishmt.

Data (request)

Data (reply)

CSE 461, Winter 2009  M11.26

UDP (connectionless)

Server

Socket()

Bind()
Client

Socket()

Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until

Data from 

client

Process

request

Data (request)

Data (reply)



  

 

CSE 461, Winter 2009  M11.27

Using Sockets: UDP

� import java.net.*;

� UDP sockets:

� new DatagramSocket();         / /  binds to ephemeral port number

� new DatagramSocket(port);  / /  tries to bind  to �port�

� DatagramPacket

� Unit of transfer betw een application  and netw orking software

� new DatagramPacket( byte[] buf, in t len);

� new DatagramPacket( byte[] buf, in t len, InetAdd ress addr, int port);

� Sending data:

� Construct a DatagramPacket

� Set its data field , and its address components

� myDatagramSocket.send( myDatagramPacket)

CSE 461, Winter 2009  M11.28

Java / UDP

� Java also has an interface supporting connect(SocketAddr addr), but it�s a 

layer above UDP

� Filters incoming packets not from addr

� Filters outgoing packets not from addr

� Performance /  correctness issue:

� Is a copy of the data portion of a DatagramPacket made when send() is invoked, 

or is a reference to the byte[] buf kept?

� Blocking vs. non-blocking IO

� Non-blocking options

1. import java.net.*; 

� DatagramSocket.setSOTimeout(in t timeout);

2. import java.nio.*;

� More general (complicated) support



  

 

CSE 461, Winter 2009  M11.29

Using Sockets: TCP

� The TCP distinction between passive and active op en is embed ded  in the 
(typical) socket interfaces

� There are tw o kinds of sockets:

� Socket

� ServerSocket

� Server starts, creates a server socket, binds it to a local port, and listens for a 

client to connect

� Client starts, creates a socket on an ephemeral port, and connects to the 

server socket

� As a result of the connection, the server socket creates a new socket to return 

to the application

� Provides a handy w ay to identify/ name a single flow in  the application code 

CSE 461, Winter 2009  M11.30

TCP Server-side: Java

� Create:
� ServerSocket ss = new ServerSocket();

� ServerSocket ss = new ServerSocket(port);

� Listen:

� Socket s = ss.accept();



  

 

CSE 461, Winter 2009  M11.31

TCP Client side: Java

� Create:
� Socket s = new Socket();

� Connect:
� s.connect(serverAddress);

� S.connect(serverAddress, timeout);

� Use:

� It�s Java, the sockets support streams,  the mind  boggles
� BufferedReader in = new BufferedReader(new InputStreamReader(s.getInputStream()));

� in.readLine();

� PrintWriter out = new PrintWriter(s.getOutputStream(), true);

� Out.print(data);

� OutStream outStream = s.getOutputStream();

� outStream.write( buf, 0, n);  // byte[] buf for n bytes starting at offset 0

CSE 461, Winter 2009  M11.32

Key Concepts

� We use ports to name p rocesses in TCP/ UDP

� �Well-know n� ports are u sed for pop ular services

� Connection setup and teardown com plicated  by the 

effects of the netw ork on messages

� TCP uses a three-w ay hand shake to set u p a connection

� TCP uses a symmetric d isconnect


