

CSE 461 � Module 12

TCP End-to-End

CSE 461, Winter 2009 M12.2

This Time

� End-to-end considerations for TCP

� H ow is connect() d ifferent from send(SYN)?

� Concurrency / blocking issu es

� What d oes receiver do?

� What d oes sender do?

� When should d ata be sent?

� When should it be resent?

� When should it conclu de connectivity

has been lost?

Physical

Data Link

Network

TCP

Session

Presentation

Application

CSE 461, Winter 2009 M12.3

1. connect() vs. send(SYN)

� Q: Is connect() the same thing as send(syn) (if the interface

allow ed the latter)?

A: No. (How are they d ifferent?)

App

TCP

App

TCP

CSE 461, Winter 2009 M12.4

2. Concurrency and blocking

� Protocol imp lem entation involves a lot of concurrency

� E.g., (S1) send ing app thread ad d s to send buffer; (S2) sending

TCP thread removes from buffer and sends; (R1) receving TCP

thread pu ts in bu ffer; (R2) receiving app read s from bu ffer

� Whether or not the app thread is blocked is an

important part of the sem antics

� Why shou ld app thread block on connect()?

� Why shou ld n�t it block on send()?

� Why should it block on send()?

� Mu st receive() be blocking?

� Mu st close() be blocking?

CSE 461, Winter 2009 M12.5

Socket Semantics vs. Application
Architecture

� The application knows best what semantics it need s

� Suppose your application establishes a data connection and a control connection
to some peer

� Can�t do a read() from either one w ithout ignoring the other

� One way to get around blocking semantics at lower level: spawn more
threads, and synchronize as necessary at the user level

� Problem: performance

� �Solution�: Most interfaces provid e some form of non-blocking
mechanism

� Usually you can:

� Ask if some operation would block or not (poll)

� Wait for any of a number of distinct events to happen (select)

� A half-way measure: often you can specify a timeout for how long the
thread should block (e.g., receive(250))

CSE 461, Winter 2009 M12.6

3. What does the receiver do?

App

TCP

App

TCP

Seqno = s

1. Under what conditons should the receiver send

back an ACK at all?

2. When it does, what should the ACK seqno be?

3. (What does an ACK tell the sender?)

CSE 461, Winter 2009 M12.7

What should the receiver do?

� General philosophy:

� keep receiver as simple as possible

� ACKs are the primary feedback the send er has to w ork w ith

� With that in mind:

� Don�t ACK ACK�s. (What happens if you do?)

� Do ACK everyth ing else.

� Receiver must ACK alread y seen data�

� Many possible choices for what ACK should send back

� TCP: seqno of first byte not yet received

� Can TCP send a segment w ith no data bytes?

� What should happen?

CSE 461, Winter 2009 M12.8

4. What does the sender do?

App

TCP

App

TCP

a) Should it send as soon as possible?

� Why might it be a good idea to wait?

� When it sends, how long should the retry timeout be?

� Problem with too short? too long?

c) When should it give up?

CSE 461, Winter 2009 M12.9

a) Send as soon as possible?

� �Silly w indow� problem

� Reminder: Effective Window =
 Receiver advertised window �
 (LastByteSent � LastByteAcked)

� Supp ose the send er transmits a small frame for some reason.

� The ACK for that frame opens the effective window by its size

� The sender sends an equally small segment

� Etc�

� Want to avoid this!

� Either d on�t send small segments, or

� Don�t open wind ow by a small amount

CSE 461, Winter 2009 M12.10

a) Send as soon as possible?

� Possible receiver side approaches:

� Cou ld u se a timeout at receiver

� Send an ACK at most once per timeout?

� Simpler: if w indow goes to zero, d on�t ad vertise an open

wind ow u ntil you have an MSS (m aximum segment size)

available

� Possible sender side approaches:

� Cou ld u se a sender timeou t

� Cou ld u se a N agle�s Algorithm (self-clocking)

CSE 461, Winter 2009 M12.11

Nagle�s Algorithm

send() {

if both available data and eff window � MSS {

send MSS bytes

} else if lastByteSent � lastByteAcked > 0 {

// expecting another ACK soon -- don�t send

} else {

send min(available data, eff window) now

}

}

CSE 461, Winter 2009 M12.12

b) Deciding When to Retransmit

� H ow d o you know w hen a packet has been lost?
(Note: It�s a little more complicated than this code�)

do {
send(p);
wait(t);

} while (!p.acked)

� H ow long should the timer t be?

� Too big: inefficient (large delays � poor use of band width)

� Too small: may retransmit unnecessarily (causing extra traffic)

� A good retransmission timer is important for good performance

� Right timer is based on the round trip time (RTT)

� Which varies greatly in the wid e area (path length and queu ing)

CSE 461, Winter 2009 M12.13

b) Setting the Retransmission Timeout

� Boils down to estimating RTT

� Why not EstimatedRTT = (Sum of SampleRTT�s) / N?

� The straightforward approach:

� for each packet, note time sent and time ACK received (RTT sample)

� compute RTT samples and average recent samples for timeout

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)
0 g 1� �

� this is an exponentially-w eighted moving average (low pass filter) that
smoothes the samples with a gain of g

� big g can be jerky, but adapts quickly to change

� small g can be smooth , but slow to respond

� typically, g = .1 or .2 � stability is more important than precision

� (lousy estimate right now does more damage than so-so estimate right now,
followed by better one a little later)

CSE 461, Winter 2009 M12.14

Original TCP (RFC793) retransmission
timeout algorithm

� Use EWMA to estimate RTT:

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)

0 g 1, usually g = .1 or .2� �

� Conservatively set timeout to small multip le (2x) of the estimate

Retransmission Timeout = EstimatedRTT + EstimatedRTT

� Why the �+ EstimatedRTT�?

� Better to wait �too long� than not long enough.

CSE 461, Winter 2009 M12.15

Jacobson/Karels Algorithm

� Replace �+ EstimatedRTT� w ith measured variation in RTT

1. Com pute a sample d eviation statistic
� DevRTT = (1-b)*DevRTT + b*|SampledRTT - EstimatedRTT|

� typically, b = .25

2. Set timeou t interval as:
� retransmission timeout = EstimatedRTT + k * DevRTT

� k is generally set to 4

� timeout =~ EstimatedRTT when variance is low (estimate is good)

� timeout qu ickly moves away from Estimated RTT (4x!) when the

variance is high (estimate is bad)

CSE 461, Winter 2009 M12.16

Karn/Partridge Algorithm

� Problem: RTT for retransmitted packets ambiguous

� Solution: Don�t measure RTT for retransmitted packets

� Problem: RTT not updated w hen timeouts occurring

� Approach: use backoff on timeout until an xmit succeeds with retransmission

Sender Receiver

Original transmission

ACK

S
a

m
p

le
R

T
T

Retransmission

Sender Receiver

Original transmission

ACK

S
a
m

p
le

R
T

T

Retransmission

CSE 461, Winter 2009 M12.17

c) When do we give up?

RFC 1122 (Requirements for Internet Hosts)

The following procedure MUST be used to handle excessive retransmissions of

data segments:

� There are two thresholds R1 and R2 measuring the amount of retransmission that has occurred

for the same segment.

� When the number of transmissions of the same segment reaches or exceeds threshold R1, pass

negative advice to the IP layer, to trigger dead-gateway diagnosis.

� When the number of transmissions of the same segment reaches a threshold R2 greater than R1,

close the connection.

� An application MUST be able to set the value for R2 for a particular connection. TCP SHOULD

inform the application of the delivery problem (unless such information has been disabled by the
application; see Section 4.2.4.1), when R1 is reached and before R2.

� The value of R1 SHOULD correspond to at least 3 retransmissions, at the current RTO. The value
of R2 SHOULD correspond to at least 100 seconds.

