
  

 

CSE 461 � Module 12

TCP End-to-End
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This Time

� End-to-end  considerations for TCP

� H ow is connect() d ifferent from send(SYN )?

� Concurrency /  blocking issu es

� What d oes receiver do?

� What d oes sender do?

� When should d ata be sent?

� When should it be resent?

� When should it conclu de connectivity 

has been lost?
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1. connect() vs. send(SYN)

� Q: Is connect() the same thing as send(syn) (if the interface 

allow ed  the latter)?

A: No.  (How are they d ifferent?)
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2. Concurrency and blocking

� Protocol imp lem entation involves a lot of concurrency

� E.g., (S1) send ing app  thread  ad d s to send buffer;  (S2) sending 

TCP thread removes from buffer and sends; (R1) receving TCP 

thread pu ts in  bu ffer;  (R2) receiving app  read s from bu ffer

� Whether or not the app thread  is blocked  is an 

important part of the sem antics

� Why shou ld  app  thread  block on connect()?

� Why shou ld n�t it block on send()?

� Why should it block on send()?

� Mu st receive() be blocking?

� Mu st close() be blocking?
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Socket Semantics vs. Application 
Architecture

� The application knows best what semantics it need s

� Suppose your application establishes a data connection and  a control connection 
to some peer

� Can�t do a read() from either one w ithout ignoring the other

� One way to get around  blocking semantics at lower level: spawn more 
threads, and  synchronize as necessary at the user level

� Problem: performance

� �Solution�:  Most interfaces provid e some form of non-blocking 
mechanism

� Usually you can:

� Ask if some operation would block or not  (poll)

� Wait for any of a number of distinct events to happen (select)

� A half-way measure: often you  can specify a timeout for how long the 
thread should block (e.g., receive(250))
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3. What does the receiver do?
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Seqno = s

1. Under what conditons should the receiver send 

back an ACK at all?

2. When it does, what should the ACK seqno be?

3. (What does an ACK tell the sender?)
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What should the receiver do?

� General philosophy: 

� keep receiver as simple as possible

� ACKs are the primary feedback the send er has to w ork w ith

� With that in mind:

� Don�t ACK ACK�s.  (What happens if you do?)

� Do ACK everyth ing else.

� Receiver must ACK alread y seen  data�

� Many possible choices for what ACK should  send  back

� TCP: seqno of first byte not yet received

� Can TCP send a segment w ith no data bytes?

� What should  happen?
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4. What does the sender do?
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a) Should it send as soon as possible?

� Why might it be a good idea to wait?

� When it sends, how long should the retry timeout be?

� Problem with too short?  too long?

c) When should it give up?
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a) Send as soon as possible?

� �Silly w indow� problem

� Reminder: Effective Window =
             Receiver advertised window �
               (LastByteSent � LastByteAcked)

� Supp ose the send er transmits a small frame for some reason.

� The ACK for that frame opens the effective window by its size

� The sender sends an equally small segment

� Etc�

� Want to avoid  this!

� Either d on�t send  small segments, or

� Don�t open wind ow by a small amount
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a) Send as soon as possible?

� Possible receiver side approaches:

� Cou ld  u se a timeout at receiver

� Send an ACK at most once per timeout?

� Simpler: if w indow goes to zero, d on�t ad vertise an open 

wind ow  u ntil you  have an MSS (m aximum  segment size) 

available

� Possible sender side approaches:

� Cou ld  u se a sender timeou t

� Cou ld  u se a N agle�s Algorithm  (self-clocking)
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Nagle�s Algorithm

send() {

if both available data and eff window � MSS {

send MSS bytes

} else if lastByteSent � lastByteAcked > 0 {

// expecting another ACK soon -- don�t send

} else {

send min(available data, eff window) now

}

}
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b) Deciding When to Retransmit

� H ow  d o you know w hen a packet has been lost?
(Note: It�s a little more complicated than this code�)

do {
send(p); 
wait(t); 

} while (!p.acked)

� H ow  long should the timer t be?

� Too big: inefficient (large delays � poor use of band width)

� Too small: may retransmit unnecessarily (causing extra traffic)

� A good retransmission timer is important for good performance

� Right timer is based  on the round  trip  time (RTT)

� Which varies greatly in the wid e area (path length and queu ing)
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b) Setting the Retransmission Timeout

� Boils down to estimating RTT

� Why not EstimatedRTT = (Sum of SampleRTT�s) / N?

� The straightforward approach:

� for each packet, note time sent and time ACK received   (RTT sample)

� compute RTT samples and average recent samples for  timeout

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)
0  g   1� �

� this is an exponentially-w eighted moving average (low  pass filter) that 
smoothes the samples with a gain of g

� big g can be jerky, but adapts quickly to change

� small g can be smooth , but slow to respond

� typically, g = .1 or .2 �  stability is more important than precision

� (lousy estimate right now does more damage than so-so estimate right now, 
followed by better one a little later)
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Original TCP (RFC793) retransmission 
timeout algorithm

� Use EWMA to estimate RTT:

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)

0  g   1,  usually g = .1 or .2� �

� Conservatively set timeout to small multip le (2x) of the estimate

Retransmission Timeout = EstimatedRTT + EstimatedRTT

� Why the �+ EstimatedRTT�?

� Better to wait �too long� than not long enough.
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Jacobson/Karels Algorithm

� Replace �+ EstimatedRTT� w ith measured  variation in RTT

1.   Com pute a sample d eviation statistic
� DevRTT = (1-b)*DevRTT + b*|SampledRTT - EstimatedRTT|

� typically, b = .25

2.   Set timeou t interval as:
� retransmission timeout = EstimatedRTT + k * DevRTT

� k is generally set to 4

� timeout =~ EstimatedRTT when variance is low  (estimate is good)

� timeout qu ickly moves away from Estimated RTT (4x!) when the 

variance is high (estimate is bad )
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Karn/Partridge Algorithm

� Problem: RTT for retransmitted  packets ambiguous

� Solution: Don�t measure RTT for retransmitted  packets

� Problem: RTT not updated  w hen timeouts occurring

� Approach: use backoff on timeout until an xmit succeeds with  retransmission
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c) When do we give up?

RFC 1122 (Requirements for Internet Hosts)

The following procedure MUST be used to handle excessive retransmissions of 

data segments: 

� There are two thresholds R1 and R2 measuring the amount of retransmission that has occurred 

for the same segment. 

� When the number of transmissions of the same segment reaches or exceeds threshold R1, pass 

negative advice to the IP layer, to trigger dead-gateway diagnosis. 

� When the number of transmissions of the same segment reaches a threshold R2 greater than R1, 

close the connection. 

� An application MUST be able to set the value for R2 for a particular connection. TCP SHOULD 

inform the application of the delivery problem (unless such information has been disabled by the 
application; see Section 4.2.4.1), when R1 is reached and before R2. 

� The value of R1 SHOULD correspond to at least 3 retransmissions, at the current RTO. The value 
of R2 SHOULD correspond to at least 100 seconds. 


