

CSE 461: Introduction to Computer

Communications Networks

Winter 2009

Module 3

Direct Link Networks � Part A

John Zahorjan

zahorjan@cs.washington.edu

534 Allen Center

1/21/09 CSE461 09wi 2

This Module's Topics

Overview of Computer Networking

1. Overview � Scope of today�s discussion

2. Encoding / Framing / Error Detection

3. Reliable Transmission

1/21/09 CSE461 09wi 3

Direct Link Networks

Host A Host B Point-to-point

�Direct link� � no switching/routing

Broadcast / shared

1/21/09 CSE461 09wi 4

Direct Link Networks

Host A Host B
�010010000011011110010100010

Host A Host B

Encoding

Framing
�010010000011011110010100010

Host A Host B
�010010000011111110010100010

Error Detection

1/21/09 CSE461 09wi 5

Physical

Link

Network

Transport

Session

Presentation

Application

Relationship to the Protocol Stack

� Up to the application

� Encode/decode messages

� Manage connections

� Reliability, congestion control

� Routing

� Framing, multiple access

� Symbol coding, modulation
Encoding
Framing

Error Detection

Remember, this is an idealization of what actually goes on
(and the organization of the book is explicitly non-layerist).

1/21/09 CSE461 09wi 6

Relationship to the hardware

Host A Host B
�010010000011011110010100010

Network inteface cards (NICs) (also called �network adaptors�)

e.g., Ethernet card or 802.11g card

1/21/09 CSE461 09wi 7

Encoding

� Modulate something � amplitude, frequency, phase

� A key issue is clocking
� Higher transmission rates require better synch

� Some example encodings (thanks, wikipedia):

NRZ
(RS-232)

NRZI
(CDs, USB, Fast Ethernet)

1/21/09 CSE461 09wi 8

Encoding: Self-Clocking

� Receiver can derive clock from the data signal

� Example 1:

� Example 2: Use NRZI, but make sure there are transitions

� 4B/5B multi-level transition (MLT)
� 100Mbps Ethernet, with 3 levels of signal

� 8B/10B MLT
� 1000Mbps Ethernet, with 5 levels of signal

� (MLT is used to limit the required signal bandwidth to what can be carried
on cheap, CAT 5 cable (100MHz).)

Manchester
(10Mbps Ethernet)

1/21/09 CSE461 09wi 9

Separate Clock Distribution
� Self-clocking consumes bandwidth

� Manchester: two transitions per bit

� 4B/5B and 8B/10B: overhead of additional bits

� Alternative: send explicit clock

� SONET (Synchronous Optical NETwork)

� Clock can be carried explicitly from one network element to another

� Nodes can all use clock from GPS

� Various fallbacks

1/21/09 CSE461 09wi 10

Framing

� Need to know where a frame starts
� Special bit sequence marks start of frame

� Need to know where frame ends
� Special bit sequence, or

� Length of frame is transmitted, or

� Fixed length frame

1/21/09 CSE461 09wi 11

Framing (cont.)

� The generic view

� Because the payload may contain the start or stop sequence,
may have to �stuff� payload at sender, and unstuff at receiver

� Something like putting a quote inside a quoted string in a
programming language

� Suppose start bit sequence is 0x7E.

� Replace 0x7E in payload with 0x7D 0x5E

� Replace 0x7D in payload with 0x7D 0x5D

� At receiver, 0x7D 0x5E replaced with 0x7E

� We�ll see more frame formats when we look at specific link level
protocols in a bit�

Start bit seq Stop bit seqPayload

1/21/09 CSE461 09wi 12

Problem: Transmission Errors
Solution: Redundancy

� Noise can flip some of the bits we receive
� We must be able to detect when this occurs!

� Basic approach: add redundant data
� Error detection codes allow errors to be recognized

� Error correction codes allow (some) errors to be repaired too

� Questions we�ll delay for a bit:
� What should happen if an uncorrectable error is detected?

� Which layer(s) should do whatever it is?

1/21/09 CSE461 09wi 13

Patterns of Errors

� Q: Suppose you expect a bit error rate of about 1 bit
per 1000 sent. What fraction of packets would be
corrupted if they were 1000 bits long (and you could
detect all errors but correct none)?

� A: It depends on the pattern of errors
� Bit errors occur at random

� Packet error rate is about 1 � 0.9991000 = 63%

� Errors occur in bursts, e.g., 100 consecutive bits every
100,000 bits

� Packet error rate 2%�

1/21/09 CSE461 09wi 14

Error Detection/Correction Codes

� Detection/correction schemes are characterized in two ways:

� Overhead: ratio of total bits sent to data bits, minus 1

� Example: 1000 data bits + 100 code bits = 10% overhead

� The errors they detect/correct
� E.g., all single-bit errors, all bursts of fewer than 3 bits, etc.

� A scheme maps D bits of data into D+R bits � i.e., it uses only 2D
distinct bit strings of the 2D+R possible.

� The sender computes the ECC bits based on the data.

� The receiver also computes ECC bits for the data it receives and
compares them with the ECC bits it received.
� Detection occurs when what the receiver computed and received don�t

match
� That is, detection occurs when the D+R total bits are not one of the 2D

messages valid using the code

Start bit seq Stop bit seqD data bits R ECC bits

1/21/09 CSE461 09wi 15

The Hamming Distance

� Hamming distance of a code is the smallest number
of bit differences that turn any one codeword into
another
� e.g, code 000 for 0, 111 for 1, Hamming distance is 3

� For code with distance d+1:
� d bit errors can be detected, e.g, 001, 010, 110, 101, 011

� For code with distance 2d+1:
� d errors can be corrected, e.g., 001 � 000

1/21/09 CSE461 09wi 16

Specific Schemes

� We�ll briefly touch on the three schemes
mentioned in the book

� They�re organized from least to most
expensive to compute

� Scheme 1: parity

� A single parity bit is associated with each K
bits of the data, for some K. It is set so that
the XOR of the data bits + the parity bit = 0
(for even parity)

� Example: K=8, one parity bit per byte
� Detects all odd numbers of errored bits

� Example: 2-dimensional parity: one parity bit for
each bit in a byte, another for each of the eight
bit positions in 8 consecutive bytes

� Detects all 1-, 2-, and 3- bit errors, plus many
>3-bit errors

0101001 1

1101001 0

1011110 1

0001110 1

0110100 1

1011111 0

1111011 0

2-d parity
example

1/21/09 CSE461 09wi 17

Specific Schemes

� Scheme 2: checksum
� General idea: Sum successive blocks of K-bits of the data,

as though they were integers

� Internet checksum: K=16, use 1�s-complement arithmetic,
take 1�s complement of result as checksum

� Example: data is 01 00 F2 03 F4 F5 F6 F7
� 0100 + F203 = [0] F303

� F303 + F4F5 = [1] E7F8 = E7F9

� E7F9 + F6F7 = [1] DEF0 = DEF1

� Checksum is 1�s complement of DEF1: 210E

� Transmit 01 00 F2 03 F4 F5 F6 F7 21 0E

� Why use 1�s-complement is a bit arcane (e.g., endian-ness of
machine doesn�t matter), and not terribly crucial

1/21/09 CSE461 09wi 18

Specific Schemes

� CRCs (Cyclic Redundancy Check)
� Stronger protection than checksums

� Used widely in practice, e.g., Ethernet CRC-32

� Implemented in hardware (XORs and shifts)

� Based on mathematics of finite fields
� �numbers� correspond to polynomials, use modulo arithmetic

� e.g, interpret 10011010 as x7 + x4 + x3 + x1

� Algorithm: Given n bits of data, generate a k bit check
sequence that gives a combined n + k bits that are
divisible by a chosen divisor C(x)

1/21/09 CSE461 09wi 19

How is C(x) Chosen?

� Mathematical properties:
� All 1-bit errors if non-zero xk and x0 terms

� All 2-bit errors if C(x) has a factor with at least three terms

� Any odd number of errors if C(x) has (x + 1) as a factor

� Any burst error < k bits

� There are standardized polynomials of different
degree that are known to catch many errors
� Ethernet CRC-32: 100000100110000010001110110110111

1/21/09 CSE461 09wi 20

Reliable Transmission

� Because there may be uncorrectable errors (no matter what
ECC scheme is used), how can the sender be sure that the
receiver got the data?

� The sender must receive an acknowledgement (ACK) from the
sender

Sender Receiver

Frame

ACK

time

Sender now
knows data
was received

What if noACK
is received?

1/21/09 CSE461 09wi 21

Timeouts / Automatic Repeat Request (ARQ)
� If no ACK comes back, the sender must re-send the data (ARQ)

� When is the sender sure that no ACK is coming back?
� Because as a practical matter delays are very difficult to bound, in

some sense it can never be sure

� Sender chooses some reasonable timeout � if the ACK isn�t back in
that much time, it assumes it will never see an ACK, and re-sends

Sender Receiver

Frame

time

Resend

timeout
What if original

frame arrived, but
ACK was lost?

1/21/09 CSE461 09wi 22

Duplicate Detection: Sequence Numbers

� So that the receiver can detect (and discard)
duplicates, distinct frames are given distinct
sequence numbers
� E.g., 0, 1, 2, 3, �

� When a frame is re-sent, it is re-sent with the same
sequence number as the original

� The receiver keeps some information about what
sequence numbers it has seen, and discards arriving
packets that are duplicates

1/21/09 CSE461 09wi 23

Stop-and-Wait Protocol

� Sender doesn�t send next packet until he�s sure
receiver has last packet

� The packet/ACK sequence enables reliability

� Sequence numbers help avoid problem of duplicate
packets

Sender Receiver

Here�s what it looks like
when things are going well
(no transmission errors).

1/21/09 CSE461 09wi 24

Stop & wait sequence numbers

Sender Receiver

Frame 0

ACK

T
im

e
o

u
t

Frame 0

ACK

T
im

e
o

u
t

The Problem Scenario

� Sequence numbers enable the receiver to discard duplicates
� ACKs must carry sequence number info as well

The Solution

Frame 1

� Stop & wait allows one outstanding frame, requires two

distinct sequence numbers

Sender Receiver

Frame 0

ACK 0

T
im

e
o
u

t

Resend 0

ACK 0

T
im

e
o
u

t

Frame 1

Frame 1

1/21/09 CSE461 09wi 25

Problem with Stop-And-Wait: Performance

� Problem: �keeping the pipe full�
� If the bandwidth-delay product is much larger than a packet

size, the sender will be unable to keep the link busy

� Example
� 1.5Mbps link x 45ms RTT = 67.5Kb (8KB)

� 1KB frames imples 1/8th link utilization

� Solution: allow multiple frames �in flight�

1/21/09 CSE461 09wi 26

Solution: Allow Multiple Frames in Flight

� This is a form of pipelining

Sender Receiver

T
im

e

�
�

1/21/09 CSE461 09wi 27

Flow Control

� Why can�t we allow the sender to send as fast as it can, timing out
and re-sending each frame as necessary?

� Flow control:

� Receiver needs to buffer data until it can be delivered to higher layers
� If the sender is much faster than the receiver, it will overwhelm it, causing

the receiver to run out of buffer space

� Additionally, if a frame is lost, the receiver will receive frames �out of
order�. It wants to buffer those frames to avoid retransmission, but
cannot deliver them to the client until the missing frame is re-sent and
received

� Flow control is the notion that the receiver must be able to control the
rate at which the sender is thrusting frames at it

� A common, important approach to flow control is the sliding window
protocol

1/21/09 CSE461 09wi 28

Sliding Window Protocol

� There is some maximum number of un-ACK�ed frames the
sender is allowed to have in flight

� We call this �the window size�

� Example: window size = 2

Sender Receiver

T
im

e

Once the window is
full, each ACK�ed

frame allows the sender

to send one more frame

1/21/09 CSE461 09wi 29

Sliding Window: Sender

� Assign sequence number to each frame (SeqNum)
� Maintain three state variables:

� send window size (SWS)

� last acknowledgment received (LAR)

� last frame sent (LFS)

� Maintain invariant: LFS - LAR <= SWS

� Advance LAR when ACK arrives
� Buffer up to SWS frames

� SWS

LAR LFS

� �

1/21/09 CSE461 09wi 30

Sliding Window: Receiver

� Maintain three state variables
� receive window size (RWS)

� largest frame acceptable (LFA)

� last frame received (LFR)

� Maintain invariant: LFA - LFR <= RWS

� Frame SeqNum arrives:

� if LFR < SeqNum � LFA � accept + send ACK

� if SeqNum � LFR or SeqNum > LFA � discard

� Send cumulative ACKs � send ACK for largest frame such that all frames
less than this have been received

� RWS

LFR LFA

� �

1/21/09 CSE461 09wi 33

Sequence Number Space

� SeqNum field is finite; sequence numbers wrap around

� Sequence number space must be larger then number of
outstanding frames

� SWS <= MaxSeqNum-1 is not sufficient

� suppose 3-bit SeqNum field (0..7)

� SWS=RWS=7

� sender transmit frames 0..6

� arrive successfully, but ACKs lost

� sender retransmits 0..6

� receiver expecting 7, 0..5, but receives the original incarnation of 0..5

� SWS < (MaxSeqNum+1)/2 is correct rule

� Intuitively, SeqNum �slides� between two halves of sequence
number space

1/21/09 CSE461 09wi 34

Sliding Window Summary

� Sliding window is best known algorithm in networking

� First role is to enable reliable delivery of packets
� Timeouts and acknowledgements

� Second role is to enable in order delivery of packets
� Receiver doesn�t pass data up to app until it has packets in order

� Third role is to enable flow control
� Prevents server from overflowing receiver�s buffer

