
CSE 461 – Module 11

Connections
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This Time

• More on the Transport Layer 

• Focus
– How do we connect processes?

• Topics
– Naming processes
– Connection setup / teardown
– Flow control
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Naming Processes/Services

• Process here is an abstract term for your Web browser (HTTP), 
Email servers (SMTP), hostname translation (DNS), mp3 player 
(RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient 

• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent”

• typically from OS
– Identify endpoint uniquely as (IP address, protocol, port)

• OS converts into process-specific channel, like “socket”
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Processes as Endpoints
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Picking Port Numbers

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?
– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
– Ports below 1024 reserved for “well-known” services

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished
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SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

• Provides message delivery between processes
– Source port filled in by OS as message is sent
– Destination port identifies UDP delivery queue at endpoint
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UDP Checksum

• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery
– So it covers data, UDP header, and IP pseudoheader

SrcPort DstPort

Checksum Length

Data

0 16 31
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Transmission Control Protocol (TCP)

• Reliable bi-directional bytestream between processes
– Message boundaries are not preserved

• Connections
– Conversation between endpoints with beginning and end

• Flow control 
– Prevents sender from over-running receiver buffers

• Congestion control
– Prevents sender from over-running network buffers
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TCP Delivery
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Options (variable)
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TCP Header Format

• Ports plus IP addresses identify a connection/flow
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Options (variable)

Data
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TCP Header Format

• Sequence, Ack numbers used for the sliding window
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Options (variable)

Data
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TCP Header Format

• Flags may be URG, ACK, PUSH, RST, SYN, FIN
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Options (variable)

Data
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TCP Header Format

• Advertised window is used for flow control



CSE 461, Winter 2010  M11.15

TCP Connection Establishment

• Both connecting and closing are (slightly) more complicated than 
you might expect

• That they can work is reasonably straightforward

• Harder is what to do when things go wrong
– TCP SYN+ACK attack

• Close looks a bit complicated because both sides have to close to 
be done

– Conceptually, there are two one-way connections
– Don’t want  to hang around forever if other end crashes
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TCP Connection Establishment

• Both sender and receiver must be ready before we start 
to transfer the data
– Sender and receiver need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is “signaling”
– It sets up state at the endpoints
– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used
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Three-Way Handshake

• Opens both directions for transfer

Active opener
(client)

Passive listener
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data
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Some Comments

• We could abbreviate this setup, but it was chosen to be 
robust, especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs) 
minimizes the chance of hosts that crash getting 
confused by a previous incarnation of a connection

• But with random ISN it actually “proves” that two hosts 
can communicate
– Weak form of authentication
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Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1
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Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently
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TCP Connection Teardown
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The TIME_WAIT State

• We wait 2MSL (two times the maximum segment 
lifetime of 60 seconds) before completing the close

• Why?

• ACK might have been lost and so FIN will be resent
• Could interfere with a subsequent connection
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Berkeley Sockets interface

• Networking protocols implemented in OS
– OS must expose a programming API to applications
– most OSs use the “socket” interface
– originally provided by BSD 4.1c  in ~1982.

• Principle abstraction is a “socket”
– a point at which an application attaches to the network
– defines operations for creating connections, attaching to 

network, sending and receiving data, closing connections
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UDP (connectionless)
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Using Sockets: UDP

• import java.net.*;

• UDP sockets:
– new DatagramSocket();         // binds to ephemeral port number

– new DatagramSocket(port);  // tries to bind to ‘port’

• DatagramPacket
– Unit of transfer between application and networking software

– new DatagramPacket( byte[] buf, int len);

– new DatagramPacket( byte[] buf, int len, InetAddress addr, int port);

• Sending data:
– Construct a DatagramPacket

– Set its data field, and its address components

– myDatagramSocket.send( myDatagramPacket)
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Java / UDP

• Java also has an interface supporting connect(SocketAddr 
addr), but it’s a layer above UDP
– Filters incoming packets not from addr
– Filters outgoing packets not to addr

• Performance / correctness issue:
– Is a copy of the data portion of a DatagramPacket made when send() 

is invoked,  or is a reference to the byte[] buf kept?

• Blocking vs. non-blocking IO
– Non-blocking options

1. import java.net.*; 
– DatagramSocket.setSOTimeout(int timeout);

2. import java.nio.*;
– More general (complicated) support
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Using Sockets: TCP

• The TCP distinction between passive and active open is embedded in the 
(typical) socket interfaces

– There are two kinds of sockets:

• Socket

• ServerSocket

• Server starts, creates a ServerSocket, binds it to a local port, and listens for a 
client to connect

• Client starts, creates a Socket on an ephemeral port, and connects to the 
server socket

• As a result of the connection, the server socket creates a new Socket to 
return to the application

– Provides a handy way to identify/name a single flow in the application code 
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TCP Server-side: Java

• Create:
– ServerSocket ss = new ServerSocket();
– ServerSocket ss = new ServerSocket(port);

• Listen:
– Socket s = ss.accept();
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TCP Client side: Java

• Create:
– Socket s = new Socket();

• Connect:
– s.connect(serverAddress);
– S.connect(serverAddress, timeout);

• Use:
– It’s Java, the sockets support streams,  the mind boggles
– BufferedReader in = new BufferedReader(new 

InputStreamReader(s.getInputStream()));
• in.readLine();

– PrintWriter out = new PrintWriter(s.getOutputStream(), true);
• Out.print(data);

– OutStream outStream = s.getOutputStream();
• outStream.write( buf, 0, n);  // byte[] buf for n bytes starting at 

offset 0
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Blocking Operations

• read() is a blocking operation

• What if other side crashes?
– No data sent
– No FIN sent

• Solutions on these slides are for Java, but general ideas 
apply universally
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Method 1: Timeouts

• Most language/socket interfaces will provide a way to way to 
say:
   read N bytes, but wait no longer than T milliseconds

• On return, you either have up to N bytes or some indication 
that you timed out

– Note: read(N) can often mean “read up to N” not “wait for N”
– Note: readline(), if it's available, means “wait until you can read a \n”

• In Java, this is done by setting a socket option
– socket.setSOTimeout( 5 );   // set 5 msec. timeout

– reader.read(buf, off, len); // wait up to 5 msec.
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Method 2: Non-blocking IO

• Every language / OS will provide some way to do non-
blocking IO
– read() can be made to always return immediately, sometimes 

with an indication that it read nothing
– A willBlock() method is probably available

– A waitFor( datasource[] ) method will be available
• Means “block until at least one of the data sources has data 

available”

• In Java, these are provided by java.nio and related 
packages
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Not A Method: Multi-threading

• Multi-threading isn't really a solution when you need non-
blocking semantics

• It is a fine solution when you're willing to block, but your 
goal is:
– To overlap some processing with blocking/waiting
– To read from more than one source

• Basic problem:
– The application (probably) can't terminate cleanly until all threads have 

terminated
– The only thread that can terminate a thread is itself
– There's no general way to wake up a thread blocked on IO
–
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Key Concepts

• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• Connection setup and teardown complicated by the 
effects of the network on messages
– TCP uses a three-way handshake to set up a connection
– TCP uses a symmetric disconnect
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