
CSE 461 – Module 11

Connections

CSE 461, Winter 2010 M11.2

This Time

• More on the Transport Layer

• Focus
– How do we connect processes?

• Topics
– Naming processes
– Connection setup / teardown
– Flow control

Physical

Data Link

Network

Transport

Session

Presentation

Application

CSE 461, Winter 2010 M11.3

Naming Processes/Services

• Process here is an abstract term for your Web browser (HTTP),
Email servers (SMTP), hostname translation (DNS), mp3 player
(RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient

• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent”

• typically from OS
– Identify endpoint uniquely as (IP address, protocol, port)

• OS converts into process-specific channel, like “socket”

CSE 461, Winter 2010 M11.4

Processes as Endpoints

CSE 461, Winter 2010 M11.5

Picking Port Numbers

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?
– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
– Ports below 1024 reserved for “well-known” services

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished

CSE 461, Winter 2010 M11.6

SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

• Provides message delivery between processes
– Source port filled in by OS as message is sent
– Destination port identifies UDP delivery queue at endpoint

CSE 461, Winter 2010 M11.7

Application
process

Application
process

Application
process

Packets arrive

Ports

Message
Queues

DeMux on
Port #

UDP Delivery

Kernel
boundary

CSE 461, Winter 2010 M11.8

UDP Checksum

• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery
– So it covers data, UDP header, and IP pseudoheader

SrcPort DstPort

Checksum Length

Data

0 16 31

CSE 461, Winter 2010 M11.9

Transmission Control Protocol (TCP)

• Reliable bi-directional bytestream between processes
– Message boundaries are not preserved

• Connections
– Conversation between endpoints with beginning and end

• Flow control
– Prevents sender from over-running receiver buffers

• Congestion control
– Prevents sender from over-running network buffers

CSE 461, Winter 2010 M11.10

TCP Delivery

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

CSE 461, Winter 2010 M11.11

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Ports plus IP addresses identify a connection/flow

CSE 461, Winter 2010 M11.12

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Sequence, Ack numbers used for the sliding window

CSE 461, Winter 2010 M11.13

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Flags may be URG, ACK, PUSH, RST, SYN, FIN

CSE 461, Winter 2010 M11.14

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Advertised window is used for flow control

CSE 461, Winter 2010 M11.15

TCP Connection Establishment

• Both connecting and closing are (slightly) more complicated than
you might expect

• That they can work is reasonably straightforward

• Harder is what to do when things go wrong
– TCP SYN+ACK attack

• Close looks a bit complicated because both sides have to close to
be done

– Conceptually, there are two one-way connections
– Don’t want to hang around forever if other end crashes

CSE 461, Winter 2010 M11.16

TCP Connection Establishment

• Both sender and receiver must be ready before we start
to transfer the data
– Sender and receiver need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is “signaling”
– It sets up state at the endpoints
– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used

CSE 461, Winter 2010 M11.17

Three-Way Handshake

• Opens both directions for transfer

Active opener
(client)

Passive listener
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

CSE 461, Winter 2010 M11.18

Some Comments

• We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

• But with random ISN it actually “proves” that two hosts
can communicate
– Weak form of authentication

CSE 461, Winter 2010 M11.19

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open/SYN

TCP State Transitions

CSE 461, Winter 2010 M11.20

Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

CSE 461, Winter 2010 M11.21

Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently

CSE 461, Winter 2010 M11.22

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2

TIME_WAIT

CLOSEDCLOSED

…

CSE 461, Winter 2010 M11.23

The TIME_WAIT State

• We wait 2MSL (two times the maximum segment
lifetime of 60 seconds) before completing the close

• Why?

• ACK might have been lost and so FIN will be resent
• Could interfere with a subsequent connection

CSE 461, Winter 2010 M11.24

Berkeley Sockets interface

• Networking protocols implemented in OS
– OS must expose a programming API to applications
– most OSs use the “socket” interface
– originally provided by BSD 4.1c in ~1982.

• Principle abstraction is a “socket”
– a point at which an application attaches to the network
– defines operations for creating connections, attaching to

network, sending and receiving data, closing connections

CSE 461, Winter 2010 M11.25

TCP (connection-oriented)

Server

Socket()

Bind()

Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishmt.

Data (request)

Data (reply)

CSE 461, Winter 2010 M11.26

UDP (connectionless)

Server

Socket()

Bind()
Client

Socket()

Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until
Data from
client

Process
request

Data (request)

Data (reply)

CSE 461, Winter 2010 M11.27

Using Sockets: UDP

• import java.net.*;

• UDP sockets:
– new DatagramSocket(); // binds to ephemeral port number

– new DatagramSocket(port); // tries to bind to ‘port’

• DatagramPacket
– Unit of transfer between application and networking software

– new DatagramPacket(byte[] buf, int len);

– new DatagramPacket(byte[] buf, int len, InetAddress addr, int port);

• Sending data:
– Construct a DatagramPacket

– Set its data field, and its address components

– myDatagramSocket.send(myDatagramPacket)

CSE 461, Winter 2010 M11.28

Java / UDP

• Java also has an interface supporting connect(SocketAddr
addr), but it’s a layer above UDP
– Filters incoming packets not from addr
– Filters outgoing packets not to addr

• Performance / correctness issue:
– Is a copy of the data portion of a DatagramPacket made when send()

is invoked, or is a reference to the byte[] buf kept?

• Blocking vs. non-blocking IO
– Non-blocking options

1. import java.net.*;
– DatagramSocket.setSOTimeout(int timeout);

2. import java.nio.*;
– More general (complicated) support

CSE 461, Winter 2010 M11.29

Using Sockets: TCP

• The TCP distinction between passive and active open is embedded in the
(typical) socket interfaces

– There are two kinds of sockets:

• Socket

• ServerSocket

• Server starts, creates a ServerSocket, binds it to a local port, and listens for a
client to connect

• Client starts, creates a Socket on an ephemeral port, and connects to the
server socket

• As a result of the connection, the server socket creates a new Socket to
return to the application

– Provides a handy way to identify/name a single flow in the application code

CSE 461, Winter 2010 M11.30

TCP Server-side: Java

• Create:
– ServerSocket ss = new ServerSocket();
– ServerSocket ss = new ServerSocket(port);

• Listen:
– Socket s = ss.accept();

CSE 461, Winter 2010 M11.31

TCP Client side: Java

• Create:
– Socket s = new Socket();

• Connect:
– s.connect(serverAddress);
– S.connect(serverAddress, timeout);

• Use:
– It’s Java, the sockets support streams, the mind boggles
– BufferedReader in = new BufferedReader(new

InputStreamReader(s.getInputStream()));
• in.readLine();

– PrintWriter out = new PrintWriter(s.getOutputStream(), true);
• Out.print(data);

– OutStream outStream = s.getOutputStream();
• outStream.write(buf, 0, n); // byte[] buf for n bytes starting at

offset 0

CSE 461, Winter 2010 M11.32

Blocking Operations

• read() is a blocking operation

• What if other side crashes?
– No data sent
– No FIN sent

• Solutions on these slides are for Java, but general ideas
apply universally

CSE 461, Winter 2010 M11.33

Method 1: Timeouts

• Most language/socket interfaces will provide a way to way to
say:
 read N bytes, but wait no longer than T milliseconds

• On return, you either have up to N bytes or some indication
that you timed out

– Note: read(N) can often mean “read up to N” not “wait for N”
– Note: readline(), if it's available, means “wait until you can read a \n”

• In Java, this is done by setting a socket option
– socket.setSOTimeout(5); // set 5 msec. timeout

– reader.read(buf, off, len); // wait up to 5 msec.

CSE 461, Winter 2010 M11.34

Method 2: Non-blocking IO

• Every language / OS will provide some way to do non-
blocking IO
– read() can be made to always return immediately, sometimes

with an indication that it read nothing
– A willBlock() method is probably available

– A waitFor(datasource[]) method will be available
• Means “block until at least one of the data sources has data

available”

• In Java, these are provided by java.nio and related
packages

CSE 461, Winter 2010 M11.35

Not A Method: Multi-threading

• Multi-threading isn't really a solution when you need non-
blocking semantics

• It is a fine solution when you're willing to block, but your
goal is:
– To overlap some processing with blocking/waiting
– To read from more than one source

• Basic problem:
– The application (probably) can't terminate cleanly until all threads have

terminated
– The only thread that can terminate a thread is itself
– There's no general way to wake up a thread blocked on IO
–

CSE 461, Winter 2010 M11.36

Key Concepts

• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• Connection setup and teardown complicated by the
effects of the network on messages
– TCP uses a three-way handshake to set up a connection
– TCP uses a symmetric disconnect

	CSE/EE 461 – Module 11 Connections
	This Time
	Naming Processes/Services
	Processes as Endpoints
	Picking Port Numbers
	User Datagram Protocol (UDP)
	UDP Delivery
	UDP Checksum
	Transmission Control Protocol (TCP)
	TCP Delivery
	TCP Header Format
	Slide 12
	Slide 13
	Slide 14
	TCP Connection Establishment
	Slide 16
	Three-Way Handshake
	Some Comments
	TCP State Transitions
	Again, with States
	Connection Teardown
	TCP Connection Teardown
	The TIME_WAIT State
	Berkeley Sockets interface
	TCP (connection-oriented)
	UDP (connectionless)
	Using Sockets: UDP
	Java / UDP
	Using Sockets: TCP
	TCP Server-side: Java
	TCP Client side: Java
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Key Concepts

