
CSE 461 – Module 12

TCP End-to-End
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This Time

• End-to-end considerations for TCP
– How is connect() different from send(SYN)?
– Concurrency / blocking issues
– What does receiver do?
– What does sender do?

• When should data be sent?
• When should it be resent?
• When should it conclude connectivity 

has been lost? Physical
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1. connect() vs. send(SYN)

• Q: Is connect() the same thing as send(syn) (if the 
interface allowed the latter)?

A: No.  (How are they different?)

App

TCP

App

TCP



CSE 461, Winter 2010  M12.4

2. Concurrency and blocking

• Protocol implementation involves a lot of concurrency
– E.g., (S1) sending app thread adds to send buffer;  (S2) 

sending TCP thread removes from buffer and sends; (R1) 
receving TCP thread puts in buffer;  (R2) receiving app reads 
from buffer

• Whether or not the app thread is blocked is an 
important part of the semantics
– Why should app thread block on connect()?
– Why shouldn’t it block on send()?

• Why should it block on send()?
– Must receive() be blocking?
– Must close() be blocking?
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Socket Semantics vs. Application 
Architecture

• The application knows best what semantics it needs
– Suppose your application establishes a data connection and a control connection 

to some peer
– Can’t do a read() from either one without ignoring the other

• One way to get around blocking semantics at lower level: spawn more 
threads, and synchronize as necessary at the user level

• Problem: performance
• “Solution”:  Most interfaces provide some form of non-blocking mechanism

– Usually you can:
• Ask if some operation would block or not  (poll)
• Wait for any of a number of distinct events to happen (select)

• A half-way measure: often you can specify a timeout for how long the 
thread should block (e.g., receive(250))
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3. What does the receiver do?
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Seqno = s

1. Under what conditons should the receiver send 
back an ACK at all?

2. When it does, what should the ACK seqno be?
3. (What does an ACK tell the sender?)
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What should the receiver do?

• General philosophy: 
– keep receiver as simple as possible
– ACKs are the primary feedback the sender has to work with

• With that in mind:
– Don’t ACK ACK’s.  (What happens if you do?)
– Do ACK everything else.

• Receiver must ACK already seen data…

• Many possible choices for what ACK should send back
– TCP: seqno of first byte not yet received

• Can TCP send a segment with no data bytes?
– What should happen?
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4. What does the sender do?
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a) Should it send as soon as possible?
• Why might it be a good idea to wait?

• When it sends, how long should the retry timeout be?

• Problem with too short?  too long?

a) When should it give up?



CSE 461, Winter 2010  M12.9

a) Send as soon as possible?

• “Silly window” problem
– Reminder: Effective Window =

             Receiver advertised window –
               (LastByteSent – LastByteAcked)

• Suppose the sender transmits a small frame for some reason.
• The ACK for that frame opens the effective window by its size
• The sender sends an equally small segment
• Etc…

• Want to avoid this!
• Either don’t send small segments, or
• Don’t open window by a small amount
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a) Send as soon as possible?

• Possible receiver side approaches:
– Could use a timeout at receiver

• Send an ACK at most once per timeout?
– Simpler: if window goes to zero, don’t advertise an open 

window until you have an MSS (maximum segment size) 
available

• Possible sender side approaches:
– Could use a sender timeout
– Could use a Nagle’s Algorithm (self-clocking)
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Nagle’s Algorithm

send() {

if both available data and eff window ≥ MSS {
send MSS bytes

} else if lastByteSent – lastByteAcked > 0 {
// expecting another ACK soon -- don’t send

} else {
send min(available data, eff window) now

}
}
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b) Deciding When to Retransmit

• How do you know when a packet has been lost?
(Note: It’s a little more complicated than this code…)

do {
send(p); 
wait(t); 

} while (!p.acked)

• How long should the timer t be?
– Too big: inefficient (large delays ⇒ poor use of bandwidth)
– Too small: may retransmit unnecessarily (causing extra traffic)
– A good retransmission timer is important for good performance

• Right timer is based on the round trip time (RTT)
– Which varies greatly in the wide area (path length and queuing)
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b) Setting the Retransmission 
Timeout

• Boils down to estimating RTT

• Why not EstimatedRTT = (Sum of SampleRTT’s) / N?

• The straightforward approach:
– for each packet, note time sent and time ACK received   (RTT sample)
– compute RTT samples and average recent samples for timeout

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)
0 ≤ g ≤  1

– this is an exponentially-weighted moving average (low pass filter) that 
smoothes the samples with a gain of g

• big g can be jerky, but adapts quickly to change
• small g can be smooth, but slow to respond
• typically, g = .1 or .2 ⇒  stability is more important than precision

– (lousy estimate right now does more damage than so-so estimate right now, 
followed by better one a little later)
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Original TCP (RFC793) 
retransmission timeout algorithm

• Use EWMA to estimate RTT:

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)
0 ≤ g ≤  1,  usually g = .1 or .2

• Conservatively set timeout to small multiple (2x) of the estimate

Retransmission Timeout = EstimatedRTT + EstimatedRTT

• Why the ‘+ EstimatedRTT’?
– Better to wait “too long” than not long enough.
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Jacobson/Karels Algorithm

• Replace “+ EstimatedRTT” with measured variation in RTT

1.   Compute a sample deviation statistic
– DevRTT = (1-b)*DevRTT + b*|SampledRTT - EstimatedRTT|

• typically, b = .25

2.   Set timeout interval as:
– retransmission timeout = EstimatedRTT + k * DevRTT

• k is generally set to 4

• timeout =~ EstimatedRTT when variance is low (estimate is good)
– timeout quickly moves away from EstimatedRTT (4x!) when the 

variance is high (estimate is bad)
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Karn/Partridge Algorithm

• Problem: RTT for retransmitted packets ambiguous

• Solution: Don’t measure RTT for retransmitted packets
– Problem: RTT not updated when timeouts occurring
– Approach: use backoff on timeout until an xmit succeeds with retransmission
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c) When do we give up?

RFC 1122 (Requirements for Internet Hosts)

The following procedure MUST be used to handle excessive retransmissions of 
data segments: 

• There are two thresholds R1 and R2 measuring the amount of retransmission that has occurred 
for the same segment. 

• When the number of transmissions of the same segment reaches or exceeds threshold R1, pass 
negative advice to the IP layer, to trigger dead-gateway diagnosis. 

• When the number of transmissions of the same segment reaches a threshold R2 greater than R1, 
close the connection. 

• An application MUST be able to set the value for R2 for a particular connection. TCP SHOULD 
inform the application of the delivery problem (unless such information has been disabled by the 
application; see Section 4.2.4.1), when R1 is reached and before R2. 

• The value of R1 SHOULD correspond to at least 3 retransmissions, at the current RTO. The 
value of R2 SHOULD correspond to at least 100 seconds. 
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